estimate of a parabolic Monge-Ampère equation on

Author:
Dong-Ho Tsai

Journal:
Proc. Amer. Math. Soc. **131** (2003), 3067-3074

MSC (2000):
Primary 35K10, 58J35

DOI:
https://doi.org/10.1090/S0002-9939-03-06848-5

Published electronically:
February 6, 2003

MathSciNet review:
1993215

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We consider a special type of parabolic Monge-Ampère equation on arising from convex hypersurfaces expansion in Euclidean spaces. We obtained a parabolic estimate of the support functions for the convex hypersurfaces assuming that we have already had a parabolic estimate.

**[AN]**B. Andrews,*Motion of hypersurfaces by Gauss curvature,*Pacific J. of Math.,**195**(2000) 1-34. MR**2001i:53108****[CA]**L. Caffarelli,*Interior**estimates for solutions of the Monge-Ampére equation*, Annals of Math.,**131**(1990) 135-150. MR**91f:35059****[C]**B. Chow,*Geometric aspects of Aleksandrov reflection and gradient estimates for parabolic equations*, Comm. Anal. Geom., Vol.**5**, Num.**2**(1997) 389-409. MR**98k:53045****[CG]**B. Chow, R. Gulliver,*Aleksandrov reflection and nonlinear evolution equations*, I:*The**-sphere and**-ball*, Calculus of Variation,**4**(1996) 249-264. MR**97f:53064****[CT]**B. Chow, D. H. Tsai,*Nonhomogeneous Gauss curvature flows*, Indiana Univ. Math. J.,**47**(1998) 965-994. MR**2000a:53116****[KS]**N. V. Krylov, M. V. Safonov,*Certain properties of parabolic equations with measurable coefficients*, Izv. Akad. Nauk SSSR Ser. Mat.,**40**(1980) 161-175; English transl., Math. USSR Izv.,**16**(1981) 151-164. MR**83c:35059****[LSU]**O. A. Ladyzenskaya, V. A. Solonikov, N. N. Ural´ceva,*Linear and Quasilinear Equations of Parabolic Type,*Translations of Math. Mono., V.**23**, AMS. MR**39:3159b****[T]**K. Tso,*Deforming a hypersurface by its Gauss-Kronecker curvature*, Comm. Pure and Appl. Math.,**38**(1985) 867-882. MR**87e:53009****[U]**J. Urbas,*An expansion of convex hypersurfaces*, J. Diff. Geom.,**33**(1991) 91-125; Correction to, ibid.,**35**(1992) 763-765. MR**93b:58142**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
35K10,
58J35

Retrieve articles in all journals with MSC (2000): 35K10, 58J35

Additional Information

**Dong-Ho Tsai**

Affiliation:
Department of Mathematics, National Tsing Hua University, Hsinchu 300, Taiwan

Email:
dhtsai@math.nthu.edu.tw

DOI:
https://doi.org/10.1090/S0002-9939-03-06848-5

Received by editor(s):
August 2, 2001

Received by editor(s) in revised form:
April 23, 2002

Published electronically:
February 6, 2003

Additional Notes:
This research was supported by NSC of Taiwan, Grant # 89-2115-M-194-026

Communicated by:
Bennett Chow

Article copyright:
© Copyright 2003
American Mathematical Society