Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)

 

Discrete spectra of $C^{*}$-algebras and complemented submodules in Hilbert $C^{*}$-modules


Author: Masaharu Kusuda
Journal: Proc. Amer. Math. Soc. 131 (2003), 3075-3081
MSC (2000): Primary 46L05, 46L08
Published electronically: February 6, 2003
MathSciNet review: 1993216
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $A$ be a $C^{*}$-algebra and let $X$ be a full (right) Hilbert $A$-module. It is shown that if the spectrum $\widehat A$ of $A$ is discrete, then every closed $\mathcal{K}(X)$-$A$-submodule of $X$ is complemented in $X$, and conversely that if $\widehat A$ is a $T_{1}$-space and if every closed $\mathcal{K}(X)$-$A$-submodule of $X$ is complemented in $X$, then $\widehat A$ is discrete.


References [Enhancements On Off] (What's this?)

  • 1. Jacques Dixmier, 𝐶*-algebras, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977. Translated from the French by Francis Jellett; North-Holland Mathematical Library, Vol. 15. MR 0458185 (56 #16388)
  • 2. Kjeld Knudsen Jensen and Klaus Thomsen, Elements of 𝐾𝐾-theory, Mathematics: Theory & Applications, Birkhäuser Boston, Inc., Boston, MA, 1991. MR 1124848 (94b:19008)
  • 3. Irving Kaplansky, Modules over operator algebras, Amer. J. Math. 75 (1953), 839–858. MR 0058137 (15,327f)
  • 4. M. Kusuda, Three-space problems in discrete spectra of $C^{*}$-algebras and dual $C^{*}$-algebras, Proc. Royal Soc. Edinburgh 131A (2001), 701-707.
  • 5. M. Kusuda, Morita equivalence for $C^{*}$-algebras with the weak Banach-Saks property, Quart. J. Math. 52 (2001), 455-461.
  • 6. M. Kusuda, Morita equivalence for scattered $C^{*}$-algebras and the Radon-Nikodým property for imprimitivity bimodules, Rev. Roum. Math. Pures et Appl. 46 (2001), 761-773.
  • 7. E. C. Lance, Hilbert 𝐶*-modules, London Mathematical Society Lecture Note Series, vol. 210, Cambridge University Press, Cambridge, 1995. A toolkit for operator algebraists. MR 1325694 (96k:46100)
  • 8. Gert K. Pedersen, 𝐶*-algebras and their automorphism groups, London Mathematical Society Monographs, vol. 14, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London-New York, 1979. MR 548006 (81e:46037)
  • 9. Iain Raeburn and Dana P. Williams, Morita equivalence and continuous-trace 𝐶*-algebras, Mathematical Surveys and Monographs, vol. 60, American Mathematical Society, Providence, RI, 1998. MR 1634408 (2000c:46108)
  • 10. Marc A. Rieffel, Induced representations of 𝐶*-algebras, Advances in Math. 13 (1974), 176–257. MR 0353003 (50 #5489)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 46L05, 46L08

Retrieve articles in all journals with MSC (2000): 46L05, 46L08


Additional Information

Masaharu Kusuda
Affiliation: Department of Mathematics, Faculty of Engineering, Kansai University, Yamate-cho 3-3-35, Suita, Osaka 564-8680, Japan
Email: kusuda@ipcku.kansai-u.ac.jp

DOI: http://dx.doi.org/10.1090/S0002-9939-03-06855-2
PII: S 0002-9939(03)06855-2
Keywords: Hilbert $C^{*}$-module, complemented subspace
Received by editor(s): November 6, 2001
Received by editor(s) in revised form: April 23, 2002
Published electronically: February 6, 2003
Communicated by: N. Tomczak-Jaegermann
Article copyright: © Copyright 2003 American Mathematical Society