HIGHER DIMENSIONAL APOSYNDETIC DECOMPOSITIONS

JAMES T. ROGERS, JR.

(Communicated by Ronald A. Fintushel)

Abstract. Let X be a homogeneous, decomposable continuum that is not aposyndetic. The Aposyndetic Decomposition Theorem yields a cell-like decomposition of X into homogeneous continua with quotient space Y being an aposyndetic, homogeneous continuum.

Assume the dimension of X is greater than one. About 20 years ago the author asked the following questions:

Can this aposyndetic decomposition raise dimension? Can it lower dimension? We answer these questions by proving the following theorem.

Theorem. The dimension of the quotient space Y is one.

1. Introduction

The Aposyndetic Decomposition Theorem [J1] of F. Burton Jones is essential to the study of homogeneous continua. It goes like this.

Theorem 1. If X is a homogeneous, decomposable continuum that is not aposyndetic, then X admits a continuous decomposition into mutually homeomorphic, indecomposable, homogeneous continua such that the quotient space Y is an aposyndetic, homogeneous continuum.

The author has strengthened this result by showing that (1) the elements of this decomposition must be cell-like continua [R1], and (2) the elements of this decomposition have the same dimension as X [R6].

In 1983 the author wrote a survey paper [R4] exposing the state of the art in the study of homogeneous continua. He raised a number of questions, about half of which have been answered. One of the unanswered ones is the following [R4, Question 11, p. 224]:

Question 2. Can this aposyndetic decomposition raise dimension? lower dimension?

In this paper we answer this question by proving the following theorem:

Theorem. If X is a homogeneous, decomposable continuum that is not aposyndetic, then the dimension of the quotient space Y of the aposyndetic decomposition of X is one.
2. Results

A continuum is a compact, connected, nonvoid metric space. A continuum is indecomposable if it is not the union of two of its proper subcontinua. A continuum is hereditarily indecomposable if each of its subcontinua is indecomposable. R. H. Bing \[B\] has constructed hereditarily indecomposable continua of dimension \(n \) for \(1 \leq n \leq \infty \).

Let \(x \) and \(y \) be points of the continuum \(X \). If \(X \) contains an open set \(G \) and a continuum \(H \) such that \(x \in G \subset H \subset X - \{y\} \), then \(X \) is aposydentic at \(x \) with respect to \(y \). If \(X \) is aposydentic at each of its points with respect to every other point, then \(X \) is aposydentic.

A continuum \(X \) is cell-like if each map of \(X \) into a polyhedron is homotopic to a constant map. A continuum is tree-like if it is cell-like and one-dimensional.

A continuum \(X \) is homogeneous if for each pair of points \(p \) and \(q \) belonging to \(X \), there exists a homeomorphism \(h : X \to X \) such that \(h(p) = q \). The author \[R5\] has shown that each homogeneous, hereditarily indecomposable, nondegenerate continuum is tree-like, and hence one-dimensional.

A subcontinuum \(Z \) of the continuum \(X \) is terminal if each subcontinuum \(W \) of \(X \) that intersects \(Z \) satisfies either \(W \subset Z \) or \(Z \subset W \). For example, if \(X \) is the topologist’s sin \(1/x \) curve and \(Z \) is the “limit bar,” then \(Z \) is a terminal subcontinuum of \(X \).

A decomposition of \(X \) into continua is terminal if each element of the decomposition is a terminal subcontinuum of \(X \). Jones \[J2\] has shown that his aposydentic decomposition is terminal.

If \(f : X \to Y \) is a map and \(y \) is a point of \(Y \), then the set \(f^{-1}(y) \) is a fiber of \(f \). If each fiber of the map \(f \) is a cell-like continuum, then \(f \) is a cell-like map.

We use reduced Čech cohomology with integral coefficients. A space is acyclic if each of its cohomology groups is trivial. Note that a cell-like continuum is acyclic.

A nondegenerate continuum \(Y \) has cohomological dimension one if \(H^q(Y, B) = 0 \) for every closed subset \(B \) of \(Y \) and for every \(q > 1 \). It is known that a continuum is one-dimensional if and only if it has cohomological dimension one [W, p. 109].

Theorem 3. Let \(X \) be a decomposable, homogeneous continuum that is not aposydentic, and let \(f : X \to Y \) be the quotient map of the aposydentic decomposition of \(X \). Then \(\dim Y = 1 \).

Proof. Since \(X \) is decomposable, \(Y \) is a nondegenerate continuum. Hence \(\dim Y \geq 1 \). If \(\dim X = 1 \), then \(Y \), being the cell-like image of \(X \), is also one-dimensional [W, p. 113].

Suppose \(\dim X > 1 \). Each fiber \(f^{-1}(y) \) is a homogeneous continuum with the property that \(\dim f^{-1}(y) = \dim X \) [R6]. Homogeneous, hereditarily indecomposable continua have dimension less than or equal to one [R5], and fibers of \(f \) are homogeneous continua, so no fiber of \(f \) is hereditarily indecomposable. Since the decomposition is terminal, each hereditarily indecomposable subcontinuum of \(X \) is contained in a fiber of \(f \).

M. Levin [L] and J. Krasinkiewicz [Kra] have shown that there exists a map \(p : X \to I \) of \(X \) onto the unit interval \(I \) such that each component of each fiber \(p^{-1}(t) \) is hereditarily indecomposable. Let \(g : X \to Z \) and \(h : Z \to I \) be the monotone-light factorization [N, p. 279] of \(p \). Each fiber \(g^{-1}(z) \) is a hereditarily indecomposable continuum (possibly a point), so each fiber of \(g \) is contained in
a fiber of f. It follows that there exists a monotone map $k: Z \to Y$ satisfying $f = k \circ g$.

Each fiber of h is totally disconnected, so Z is one-dimensional [HW, Theorem VI7, p. 91]. It suffices to show that the cohomological dimension of Y is one. Let B be a closed subset of Y. Consider $H^q(Y, B)$ for $q > 1$. Let $A = f^{-1}(B)$ and $C = k^{-1}(B)$. Since each fiber of f is cell-like, each fiber has trivial cohomology. The Vietoris-Begle Theorem [S, p. 344] implies that $f^*: H^q(Y, B) \to H^q(X, A)$ is an isomorphism. Since $f = k \circ g$, we have $f^* = g^* \circ k^*$. Since Z is one-dimensional, $H^q(Z, C) = 0$. Hence $H^q(Y, B) = 0$ as well. This completes the proof.

As a consequence of this theorem, we obtain some information on the cohomology groups of homogeneous, decomposable continua that are not aposyndetic. First we need a definition.

A continuum X is unicoherent if each pair of subcontinua of X whose union is X has a connected intersection. A continuum is hereditarily unicoherent if each of its subcontinua is unicoherent.

Corollary 4. If X is a homogeneous, decomposable continuum that is not aposyndetic, then $H^1(X) \neq 0$, and $H^q(X) = 0$ for $q > 1$.

Proof. Since $f^*: H^q(Y) \to H^q(X)$ is an isomorphism, it suffices to show these claims for the cohomology groups of Y. The second claim is true because Y is one-dimensional. To prove the first claim, recall [R2, Theorem 1, p. 450] that an acyclic one-dimensional continuum is hereditarily unicoherent. Jones [J2] has shown that a hereditarily unicoherent, homogeneous continuum is indecomposable.

There is a theorem for indecomposable, homogeneous continua that corresponds to the Aposyndetic Decomposition Theorem. It is called the Terminal Decomposition Theorem [R3], and it goes like this.

Theorem 5. If X is a homogeneous, indecomposable continuum that contains a nondegenerate, proper, terminal subcontinuum and if $H^1(X) \neq 0$, then X admits a continuous decomposition into mutually homeomorphic, indecomposable, homogeneous continua such that the quotient space Y is a homogeneous, indecomposable continuum that contains no proper, nondegenerate, terminal subcontinuum.

The condition of nontrivial first cohomology of X is necessary to insure the existence of maximal terminal, proper subcontinua of X; these are the elements of the decomposition. As before, the elements of the decomposition are cell-like continua of the same dimension as X. Hence, by the same proof as Theorem 3, we have the following theorem.

Theorem 6. If X satisfies the hypotheses of Theorem 5, then the quotient space Y of the terminal decomposition is one-dimensional.

Question 7. If X satisfies the hypotheses of Theorem 5, is the quotient space Y of the terminal decomposition of X a solenoid?
According to a theorem of Pavel Krupski [Kru, Theorem 3.1, p. 167], the answer is yes, provided that the complement of any subcontinuum of \(Y \) has finitely many components.

References

