Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

A nonstandard proof of the Eberlein-Smulian theorem


Authors: Stefano Baratella and Siu-Ah Ng
Journal: Proc. Amer. Math. Soc. 131 (2003), 3177-3180
MSC (2000): Primary 46B04; Secondary 46B10, 46B08
Published electronically: January 28, 2003
MathSciNet review: 1992858
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The Eberlein-Smulian theorem on the equivalence of weak compactness and the finite intersection property of bounded closed convex sets is given a short elementary proof by applying Abraham Robinson's nonstandard characterization of compactness.


References [Enhancements On Off] (What's this?)

  • 1. N. Bourbaki, Topological vector spaces. Chapters 1–5, Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 1987. Translated from the French by H. G. Eggleston and S. Madan. MR 910295
  • 2. Mahlon M. Day, Normed linear spaces, 3rd ed., Springer-Verlag, New York-Heidelberg, 1973. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 21. MR 0344849
  • 3. C. Ward Henson and L. C. Moore Jr., Nonstandard analysis and the theory of Banach spaces, Nonstandard analysis—recent developments (Victoria, B.C., 1980) Lecture Notes in Math., vol. 983, Springer, Berlin, 1983, pp. 27–112. MR 698954, 10.1007/BFb0065334
  • 4. Robert C. James, The Eberlein-Šmulian theorem, Functional analysis, Narosa, New Delhi, 1998, pp. 47–49. MR 1668790
  • 5. Stefan Kremp, An elementary proof of the Eberlein-Šmulian theorem and the double limit criterion, Arch. Math. (Basel) 47 (1986), no. 1, 66–69. MR 855139, 10.1007/BF01202501
  • 6. Albert E. Hurd and Peter A. Loeb, An introduction to nonstandard real analysis, Pure and Applied Mathematics, vol. 118, Academic Press, Inc., Orlando, FL, 1985. MR 806135
  • 7. W. A. J. Luxemburg, A general theory of monads, Applications of Model Theory to Algebra, Analysis, and Probability (Inte rnat. Sympos., Pasadena, Calif., 1967) Holt, Rinehart and Winston, New York, 1969, pp. 18–86. MR 0244931
  • 8. Robert E. Megginson, An introduction to Banach space theory, Graduate Texts in Mathematics, vol. 183, Springer-Verlag, New York, 1998. MR 1650235
  • 9. Helmut H. Schaefer, Topological vector spaces, Springer-Verlag, New York-Berlin, 1971. Third printing corrected; Graduate Texts in Mathematics, Vol. 3. MR 0342978

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 46B04, 46B10, 46B08

Retrieve articles in all journals with MSC (2000): 46B04, 46B10, 46B08


Additional Information

Stefano Baratella
Affiliation: Dipartimento di Matematica, Università di Trento, I-38050 Povo (TN), Italy
Email: baratell@science.unitn.it

Siu-Ah Ng
Affiliation: School of Mathematics, Statistics and Information Technology, University of Natal, Pietermaritzburg, 3209 South Africa
Email: ngs@nu.ac.za

DOI: http://dx.doi.org/10.1090/S0002-9939-03-06894-1
Keywords: Nonstandard analysis, Eberlein-\v Smulian theorem, weak compactness
Received by editor(s): September 11, 2001
Received by editor(s) in revised form: May 13, 2002
Published electronically: January 28, 2003
Additional Notes: The authors were supported by South African NRF 2039556 and Progetto Tematico GNSAGA “Teoria dei Modelli ed Applicazioni”
Communicated by: N. Tomczak-Jaegermann
Article copyright: © Copyright 2003 American Mathematical Society