The self-similar expanding curve for the curvature flow equation

Authors:
Hua-Huai Chern, Jong-Shenq Guo and Chu-Pin Lo

Journal:
Proc. Amer. Math. Soc. **131** (2003), 3191-3201

MSC (2000):
Primary 35B60, 34A12, 35B35

Published electronically:
April 30, 2003

MathSciNet review:
1992860

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We study a two-point free boundary problem for the curvature flow equation. By studying the corresponding nonlinear initial value problem, we obtain the existence and uniqueness of the forward self-similar solution of this problem. The corresponding curve is called the self-similar expanding curve. We also derive the asymptotic stability of this curve.

**1.**Steven J. Altschuler and Lang-Fang Wu,*Convergence to translating solutions for a class of quasilinear parabolic boundary problems*, Math. Ann.**295**(1993), no. 4, 761–765. MR**1214961**, 10.1007/BF01444916**2.**Steven J. Altschuler and Lang F. Wu,*Translating surfaces of the non-parametric mean curvature flow with prescribed contact angle*, Calc. Var. Partial Differential Equations**2**(1994), no. 1, 101–111. MR**1384396**, 10.1007/BF01234317**3.**J. D. Buckmaster and G. S. S. Ludford,*Theory of laminar flames*, Cambridge Monographs on Mechanics and Applied Mathematics, Cambridge University Press, Cambridge-New York, 1982. Electronic & Electrical Engineering Research Studies: Pattern Recognition & Image Processing Series, 2. MR**666866****4.**W. K. Burton, N. Cabrera, and F. C. Frank,*The growth of crystals and the equilibrium structure of their surfaces*, Philos. Trans. Roy. Soc. London. Ser. A.**243**(1951), 299–358. MR**0043005****5.**Luis A. Caffarelli and Juan L. Vázquez,*A free-boundary problem for the heat equation arising in flame propagation*, Trans. Amer. Math. Soc.**347**(1995), no. 2, 411–441. MR**1260199**, 10.1090/S0002-9947-1995-1260199-7**6.**Yun Gang Chen, Yoshikazu Giga, and Shun’ichi Goto,*Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations*, J. Differential Geom.**33**(1991), no. 3, 749–786. MR**1100211****7.**Bennett Chow and Dong-Ho Tsai,*Geometric expansion of convex plane curves*, J. Differential Geom.**44**(1996), no. 2, 312–330. MR**1425578****8.**K. Deckelnick, C. M. Elliott, and G. Richardson,*Long time asymptotics for forced curvature flow with applications to the motion of a superconducting vortex*, Nonlinearity**10**(1997), no. 3, 655–678. MR**1448581**, 10.1088/0951-7715/10/3/005**9.**L. C. Evans and J. Spruck,*Motion of level sets by mean curvature. I*, J. Differential Geom.**33**(1991), no. 3, 635–681. MR**1100206****10.**Victor A. Galaktionov, Josephus Hulshof, and Juan L. Vazquez,*Extinction and focusing behaviour of spherical and annular flames described by a free boundary problem*, J. Math. Pures Appl. (9)**76**(1997), no. 7, 563–608. MR**1472115**, 10.1016/S0021-7824(97)89963-1**11.**Y. Giga, N. Ishimura, and Y. Kohsaka, Spiral solutions for a weakly anisotropic curvature flow equation, Hokkaido University Preprint Series in Mathematics, Series #529, June 2001.**12.**J.-S. Guo and Y. Kohsaka, Two-point free boundary problem for heat equation, preprint.**13.**Morton E. Gurtin,*Thermomechanics of evolving phase boundaries in the plane*, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1993. MR**1402243****14.**Danielle Hilhorst and Josephus Hulshof,*A free boundary focusing problem*, Proc. Amer. Math. Soc.**121**(1994), no. 4, 1193–1202. MR**1233975**, 10.1090/S0002-9939-1994-1233975-9**15.**Gerhard Huisken,*Nonparametric mean curvature evolution with boundary conditions*, J. Differential Equations**77**(1989), no. 2, 369–378. MR**983300**, 10.1016/0022-0396(89)90149-6**16.**Hitoshi Imai, Naoyuki Ishimura, and TaKeo Ushijima,*A crystalline motion of spiral-shaped curves with symmetry*, J. Math. Anal. Appl.**240**(1999), no. 1, 115–127. MR**1728200**, 10.1006/jmaa.1999.6599**17.**James Keener and James Sneyd,*Mathematical physiology*, Interdisciplinary Applied Mathematics, vol. 8, Springer-Verlag, New York, 1998. MR**1673204****18.**Yoshihito Kohsaka,*Free boundary problem for quasilinear parabolic equation with fixed angle of contact to a boundary*, Nonlinear Anal.**45**(2001), no. 7, Ser. A: Theory Methods, 865–894. MR**1845031**, 10.1016/S0362-546X(99)00422-8**19.**Karol Mikula and Daniel Ševčovič,*Evolution of plane curves driven by a nonlinear function of curvature and anisotropy*, SIAM J. Appl. Math.**61**(2001), no. 5, 1473–1501 (electronic). MR**1824511**, 10.1137/S0036139999359288**20.**Hirokazu Ninomiya and Masaharu Taniguchi,*Traveling curved fronts of a mean curvature flow with constant driving force*, Free boundary problems: theory and applications, I (Chiba, 1999) GAKUTO Internat. Ser. Math. Sci. Appl., vol. 13, Gakkōtosho, Tokyo, 2000, pp. 206–221. MR**1793036****21.**Hirokazu Ninomiya and Masaharu Taniguchi,*Stability of traveling curved fronts in a curvature flow with driving force*, Methods Appl. Anal.**8**(2001), no. 3, 429–449. MR**1904754**, 10.4310/MAA.2001.v8.n3.a4**22.**Murray H. Protter and Hans F. Weinberger,*Maximum principles in differential equations*, Springer-Verlag, New York, 1984. Corrected reprint of the 1967 original. MR**762825****23.**J. A. Sethian,*Level set methods and fast marching methods*, 2nd ed., Cambridge Monographs on Applied and Computational Mathematics, vol. 3, Cambridge University Press, Cambridge, 1999. Evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science. MR**1700751****24.**J. L. Vazquez,*The free boundary problem for the heat equation with fixed gradient condition*, Free boundary problems, theory and applications (Zakopane, 1995) Pitman Res. Notes Math. Ser., vol. 363, Longman, Harlow, 1996, pp. 277–302. MR**1462990**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
35B60,
34A12,
35B35

Retrieve articles in all journals with MSC (2000): 35B60, 34A12, 35B35

Additional Information

**Hua-Huai Chern**

Affiliation:
Department of Computer and Information Sciences, National Taiwan Ocean University, 2, Pei-Ning Road, Keelung, Taiwan

Email:
felix@cs.ntou.edu.tw

**Jong-Shenq Guo**

Affiliation:
Department of Mathematics, National Taiwan Normal University, 88, S-4 Ting Chou Road, Taipei 117, Taiwan

Email:
jsguo@math.ntnu.edu.tw

**Chu-Pin Lo**

Affiliation:
Department of Applied Mathematics, Providence University, 200, Chung-Chi Road, Shalu, Taichung County 433, Taiwan

Email:
cplo@pu.edu.tw

DOI:
http://dx.doi.org/10.1090/S0002-9939-03-07055-2

Received by editor(s):
May 16, 2002

Published electronically:
April 30, 2003

Communicated by:
David S. Tartakoff

Article copyright:
© Copyright 2003
American Mathematical Society