On the algebra range of an operator on a Hilbert -module over compact operators

Author:
Rajna Rajic

Journal:
Proc. Amer. Math. Soc. **131** (2003), 3043-3051

MSC (2000):
Primary 47A12, 46L08

DOI:
https://doi.org/10.1090/S0002-9939-03-07130-2

Published electronically:
May 5, 2003

MathSciNet review:
1993211

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let be a Hilbert -module over the -algebra of all compact operators on a complex Hilbert space . Given an orthogonal projection , we describe the set for an arbitrary adjointable operator . The relationship between the set and the matricial range of is established.

**1.**W. B. Arveson,*Subalgebras of -algebras*, Acta Math.**123**(1969), 141-224. MR**40:6274****2.**-,*Subalgebras of -algebras*II, Acta Math.**128**(1972), 271-308. MR**52:15035****3.**D. Bakic and B. Guljas,*Hilbert -modules over -algebras of compact operators*, Acta Sci. Math. (Szeged)**68**(2002), 249-269.**4.**F. F. Bonsall and J. Duncan,*Numerical ranges*II, London Math. Soc. Lecture Note Series**10**, Cambridge University Press, Cambridge, 1973. MR**56:1063****5.**J. Bunce and N. Salinas,*Completely positive maps on -algebras and the left matricial spectra of an operator*, Duke Math. J.**43**(1976), 747-774. MR**55:3798****6.**C. Lance,*Hilbert -modules*, London Math. Soc. Lecture Note Series**210**, Cambridge University Press, Cambridge, 1995. MR**96k:46100****7.**V. I. Paulsen,*Completely bounded maps and dilations*, Research Notes in Math., vol. 146, Pitman, London, 1986. MR**88h:46111****8.**J. R. Ringrose,*Compact non-selfadjoint operators*, Van Nostrand, Princeton, 1971.**9.**R. R. Smith and J. D. Ward,*Matrix ranges for Hilbert space operators*, Amer. J. Math.**102**(1980), 1031-1081. MR**82a:46067**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
47A12,
46L08

Retrieve articles in all journals with MSC (2000): 47A12, 46L08

Additional Information

**Rajna Rajic**

Affiliation:
Faculty of Mining, Geology and Petroleum Engineering, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia

Email:
rajna.rajic@zg.hinet.hr

DOI:
https://doi.org/10.1090/S0002-9939-03-07130-2

Keywords:
$C^*$-algebra,
Hilbert $C^*$-module,
adjointable operator,
matricial range of an operator

Received by editor(s):
June 20, 2001

Received by editor(s) in revised form:
January 22, 2002

Published electronically:
May 5, 2003

Communicated by:
David R. Larson

Article copyright:
© Copyright 2003
American Mathematical Society