A LIMIT THEOREM FOR THE SHANNON CAPACITIES
OF ODD CYCLES I

TOM BOHMAN

(Communicated by John R. Stembridge)

Abstract. This paper contains a construction for independent sets in the
powers of odd cycles. It follows from this construction that the limit as \(n \to \infty \) of
\(n + 1/2 - \Theta(C_{2n+1}) \) is zero, where \(\Theta(G) \) is the Shannon capacity
of the graph \(G \).

1. Introduction

The Shannon capacity of a simple graph \(G \) is defined as follows:
\[
\Theta(G) = \limsup_{n \to \infty} \left(\frac{\alpha(G^n)}{n} \right)^{1/n} = \sup_n \left(\frac{\alpha(G^n)}{n} \right)^{1/n}
\]
where \(\alpha(G) \) is the independence number of \(G \) and \(G^n \) is the \(n^{th} \) power of \(G \),
the graph having vertex set \(V(G)^n \) and an edge between vertices \((x_1, \ldots, x_n) \) and
\((y_1, \ldots, y_n) \) if and only if \(\{x_i, y_i\} \in E(G) \) or \(x_i = y_i \) for \(i = 1, \ldots, n \). This graph
invariant was introduced by Shannon in 1956 as a measure of the zero-error capacity
of a noisy communication channel [12]. For an excellent introduction to and survey
of zero-error information theory see [8]; for recent progress on some long-standing
conjectures concerning Shannon capacity that are not directly related to this paper
see [1].

It is easy to see that \(\alpha(G) \leq \Theta(G) \). Shannon showed that a linear programming
relaxation of the independence number gives an upper bound on the capacity. A
fractional vertex packing of a graph \(G \) is an assignment \(w \) of nonnegative weights
to the vertices of \(G \) such that \(\sum_{x \in V(K)} w(x) \leq 1 \) for all cliques \(K \). The weighted
independence number of \(G \), which is denoted by \(\alpha^*(G) \), is the maximum taken
over all fractional vertex packings of \(\sum_{x \in V(G)} w(x) \). Shannon showed that \(\Theta(G) \leq \alpha^*(G) \) [12] (this upper bound was later studied by Rosenfeld [11]). These bounds
suffice to compute the capacity of any graph \(G \) whose vertex set can be covered
by a collection of $\alpha(G)$ cliques. This class of graphs includes all perfect graphs; in particular, it includes all even cycles and all graphs on 5 or fewer vertices other than C_5, the cycle on 5 vertices.

The Shannon capacity of C_5 was not determined until 1979, when Lovász showed that $\Theta(C_5) = \sqrt{5}$ [9]. He achieved this celebrated result by showing that the umbrella function $\vartheta(G)$ (also known as the Lovász theta function) gives an upper bound on the capacity. Shortly thereafter Haemers [5], [6] and McEliece, Rodemich and Rumsey [10] gave other upper bounds on the capacity. The Shannon capacities of odd cycles on 7 or more vertices remain unknown (the capacity of C_7 is, perhaps, one of the most notorious open problems in extremal combinatorics). One indication of the importance of odd cycles is the following conjecture of Berge [3], known as the strong perfect graph conjecture: a graph is imperfect if and only if it contains an odd cycle or the complement of an odd cycle as an induced subgraph.

In this paper we establish a limit theorem for the Shannon capacities of odd cycles. Since $\alpha(C_{2n+1}) = n$ and $\alpha^*(C_{2n+1}) = n + 1/2$, the quantity of interest in the limit is the difference $n + 1/2 - \Theta(C_{2n+1})$. The best known upper bound on $\Theta(C_{2n+1})$ is given by the Lovász theta function:

$$\Theta(C_{2n+1}) \leq \vartheta(C_{2n+1}) = \frac{(2n+1) \cos(\pi/(2n+1))}{1 + \cos(\pi/(2n+1))} = n + \frac{1}{2} - O(1/n).$$

Hales [7] established a lower bound on $\Theta(C_{2n+1})$ by determining $\alpha(C_{2n+1}^2)$:

$$\Theta(C_{2n+1}) \geq \sqrt{\alpha(C_{2n+1}^2)} = \sqrt{n^2 + \frac{n}{2}} = n + \frac{1}{4} - O(1/n).$$

While this general lower bound leaves a gap in the limit, Hales showed, by constructing a maximum independent set H_d in C_{2n+1}^d, that the limit infimum as n goes to infinity of $n + \frac{1}{2} - \Theta(C_{2n+1})$ is zero [7]. Bohman, Ruszinkó and Thoma recently improved the lower bound in [11] to $n + 1/3 - O(1/n)$ by constructing large independent sets in the third powers of all odd cycles, and they went on to conjecture that the limit as n goes to infinity of $n + \frac{1}{2} - \Theta(C_{2n+1})$ is zero [4].

We construct nearly (in a sense made clear below) maximum independent sets in the d^{th} powers of all odd cycles on $2^{d+2} + 1$ or more vertices. The construction is, in a sense, based on Hales’ H_d. To see that the independent sets we construct are nearly maximum it will suffice to appeal to the bound $\alpha(G \times H) \leq \alpha^*(G) \alpha(H)$ (first noted by Hales [7]) from which it follows that $\alpha(C_{2n+1}^d) \leq n(n + 1/2)^{d-1}$.

Theorem 1.1. For $d \geq 3$ fixed we have

$$\alpha(C_{2n+1}^d) = n^d + \frac{d-1}{2} n^{d-1} + O(n^{d-2}).$$

It follows from this that the limit as n goes to infinity of $n + \frac{1}{2} - (\alpha(C_{2n+1}^d))^{1/d}$ is $1/(2d)$. Therefore, we have the limit theorem conjectured in [4].

Corollary 1.2.

$$\lim_{n \to \infty} n + \frac{1}{2} - \Theta(C_{2n+1}) = 0.$$

The remainder of the paper is organized as follows. In the next section we introduce Hales’ independent set H_d and establish notational conventions. The construction that proves Theorem 1.1 is divided into two phases, which are presented in sections 3 and 4. Phase I yields an independent set \mathcal{I}_m containing $n^d + O(n^{d-1})$
vertices in such a way that it leaves space for the placement of additional vertices during the formation of $I'_m \supseteq I_m$ in Phase II. The size of I_m is determined in section 5.

2. Hales’ construction

We begin with notational conventions. We henceforth identify the vertices of the graph C^n_r with the elements of the group Z^n_r in the natural way. We use the same symbol for both a vertex in the graph and the corresponding group element. Define

\[N = N_s = \{-1, 0, 1\}^s. \]

We can express adjacency in the graph in terms of the group operation; to be precise, for $a \neq b$ we have

\[\{a, b\} \in E(C^n_r) \iff a - b \in N. \]

We will make use of the following operations on sets of group elements: for subsets X, Y of Z^n_r let $X + Y = \{x + y : x \in X, y \in Y\}$ and $X - Y = \{x - y : x \in X, y \in Y\}$. For r odd and $a \in Z_r$ we define $\rho(a)$ to be the integer in the congruence class of g modulo r having the smallest absolute value. For $x = (x_1, \ldots, x_s) \in Z^n_r$ define $\rho(x) = (\rho(x_1), \rho(x_2), \ldots, \rho(x_s))$. Finally, we use the product notation $g \cdot h = g_1 h_1 + \cdots + g_s h_s$ for $g \in Z^n_r$ and group element $h = (h_1, \ldots, h_s)$.

We now turn to Hales’ construction of the independent set H_d in $C^{d\ 2d+1}_r$. For $d = 2, 3, \ldots$ define

\[h_d = (-2d-1, 2d-2, \ldots, 1) \]

and \[H_d = \{ a \in Z^{d\ 2d+1}_r : h_d \cdot a = 0 \}. \]

To show that H_d is an independent set we first note that H_d is a subgroup of $Z^{d\ 2d+1}_r$. If there exist $a, b \in H_d$ that are adjacent, then it follows from (2.1) that $a - b$ (which is a subgroup element) is in N. However, it is easy to see that $H_d \cap N = \{0\}$.

3. Phase I

Let $d \geq 3$ be fixed and suppose $2n + 1 \geq 4(2^d) + 1$. Our construction of a large independent set in $C^{d\ 2d+1}_r$ depends on the residue of n modulo $2d - 1$. So, we introduce the notation $2n + 1 = m = 2d - r + 1$ where $1 \leq r \leq 2^d - 1$. The independent set in $C^{d\ 2d+1}_r$ that we produce in Phase I will be denoted I_m.

We begin with a subgroup of $Z^{d\ 2d+1}_r$ that corresponds to Hales’ H_d. Define

\[H_m = \{ a \in Z^{d\ 2d+1}_r : h_d \cdot a = 0 \}. \]

We will find it useful to establish a notation for expressing elements of this subgroup in terms of a particular set of generators. We consider the map $f : Z^{d\ 2d+1}_r \to H_m$ given by $f(x) = Ax$ where

\[A = \begin{bmatrix} 1 & 1 & \ldots & 1 & 1 \\ 2 & 1 & \ldots & 1 & 1 \\ 0 & 2 & \ldots & 1 & 1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \ldots & 2 & 1 \\ 0 & 0 & \ldots & 0 & 2 \end{bmatrix}. \]
Note that the inverse of \(f \) is given by \(f^{-1}(y) = By \) where
\[
B = \begin{bmatrix}
-1 & 1 & 0 & 0 & \cdots & 0 & 0 \\
-2 & 1 & 1 & 0 & \cdots & 0 & 0 \\
-4 & 2 & 1 & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
-2^{d-2} & 2^{d-3} & 2^{d-4} & 2^{d-5} & \cdots & 1 & 1
\end{bmatrix},
\]
and that \(f \) is an isomorphism. In the remainder of this section both \(B \) and \(h_d \) will be viewed over both \(\mathbb{Z}_m \) and \(\mathbb{Z} \). It will be clear from context in which setting we are working.

We construct \(I_m \) by first assigning to each \(x \in \mathbb{Z}_m^{d-1} \) an independent set \(I_x \) in \(\mathbb{Z}_m^d \) of the form
\[
I_x = f(x) + S_x + t_x
\]
where \(S_x \) is collection of multiples of \(e_1 = (1,0,\ldots,0) \) that ‘expands’ \(f(x) \) into a vertex set consisting of either \(l \) or \(l+1 \) vertices and \(t_x \) is a translation in coordinates 2 through \(d-1 \). Define
\[
E_i = \{-(i-1)e_1, -(i-3)e_1, \ldots, (i-1)e_1 \} \quad \text{for} \quad i = l-3, l, l+1.
\]
The precise constraints that we place on \(S_x \) and \(t_x \) are as follows:
\[
S_x \subset \{E_i, E_{i+1}\} \quad \text{and} \quad t_x \subset \{\pm 1_A : A \subset \{2, \ldots, d-1\}\}.
\]
We then set
\[
I_m = \bigcup_{x \in \mathbb{Z}_m^{d-1}} I_x.
\]
Since each \(I_x \) is clearly an independent set (as the same holds for each \(S_x \), the crux of the proof will be in showing that \(I_x \cup I_y \) is an independent set for \(x \neq y \).

It follows from (2.1) that \(I_x \cup I_y \) is both a disjoint union and an independent set if and only if \((I_x - I_y) \cap \mathcal{N} = \emptyset \). It then follows from (3.1) that we have
\[
I_x \cup I_y \text{ is independent } \iff f(y-x) \notin S_x - S_y + t_x - t_y - \mathcal{N}.
\]
It follows from (3.2) that we have
\[
S_x - S_y + t_x - t_y - \mathcal{N} \subset \bigcup_{\xi=1}^1 [-2l-1, 2l+1] \times (\xi + [-2, 2])^{d-2} \times [-1, 1] =: B.
\]
The set \(H_m \cap \mathcal{B} \) has a very well organized preimage under \(f \).

Claim 3.1. If \(u \in \mathbb{Z}_m^{d-1} \) and \(f(u) \in \mathcal{B} \), then there exists \(\kappa \in \{-1, 0, 1\} \) such that \(h_d \cdot \rho(f(u)) = \kappa m \) and
\[
u_i \in \left\{ \left\lfloor \frac{km}{2^{d-i}} \right\rfloor, \left\lfloor \frac{km}{2^{d-i}} \right\rfloor, \left\lfloor \frac{km}{2^{d-i}} \right\rfloor, \left\lfloor \frac{km}{2^{d-i}} \right\rfloor + 1 \right\} \quad \text{for} \quad i = 1, \ldots, d-1.
\]

Proof. Let \(v \in H_m \cap \mathcal{B}, u = Bv, z = \rho(v) \) and \(w = Bz \). It follows from the definition of \(\mathcal{B} \) that we have \(|h_d \cdot z| \leq (l+2)^{d-2} < 2m \) and therefore there exists \(\kappa \in \{-1, 0, 1\} \) such that \(h_d \cdot z = \kappa m \). So, for \(i = 1, \ldots, d-1 \), we have
\[
2^{d-i}w_i - 2^{d-i-1}z_{i+1} + 2^{d-i-2}z_{i+2} + \cdots + z_d = h_d \cdot z = \kappa m,
\]
and therefore
\[
2^{d-i}w_i = \kappa m + 2^{d-i-1}z_{i+1} - 2^{d-i-2}z_{i+2} - \cdots - z_d.
\]
In order to define the collection of cubes we first define x for each i.

For a pair of cubes Z organized. This collection consists of three parts, each of which is a small ‘cube’ in Z^{d-1}.

Motivated by Claim 3.1, we partition Z^{d-1} into $2^{d-1} + 1$ sets. We define this partition by specifying a collection of 2^{d-1} large pairwise-disjoint cubes. The set S_x and vector t_x that define I_x will be constants over each of these cubes. The other part in the partition is (of course) the ‘rest,’ all vertices not contained in one of the cubes. We set $I_x = \emptyset$ for each vertex x in this extra part (in Phase II of this construction we enlarge the independent set I_x constructed in this section to an independent set I_m by assigning most of the elements of the ‘rest’ nonempty I_x’s).

In order to define the collection of cubes we first define

$$ a_i = \left\lfloor \frac{km}{2^{d-1}} \right\rfloor, \quad b_i = a_i + n - 5 \quad \text{and} \quad J_i = [a_i, b_i] $$

for $i = 0, \ldots, 2^{d-1} - 1$. In the definition of the interval J_i we are working on the circle Z_m: that is, if $a > b$, the interval $[a, b]$ is taken to mean $[a, m - 1] \cup [0, b]$. Furthermore, the indices of the J_i’s are taken to be elements of $Z_{2^{d-1}}$. Note that we have

$$ a_{i+2^{d-2}} - b_i \in \{5, 6\}, $$

and therefore this collection of intervals has the following property:

$$ J_i \cap J_{i+2^{d-2}} = \emptyset. $$

We say that interval $J_{i+2^{d-2}}$ is the antipode of J_i. We are now ready to define the cubes. Define

$$ C_k = J_k \times J_{2k} \times J_{4k} \times \cdots \times J_{2^{d-2}k} \quad \text{for} \quad k = 0, \ldots, 2^{d-1} - 1. $$

For a pair of cubes C_j, C_k such that $j \neq k$ we let $\gamma = \gamma_{j,k}$ be the unique element of $\{1, \ldots, d - 1\}$ such that

$$ 2^{\gamma - 1}j + 2^{d-2} = 2^{\gamma - 1}k. $$

Note that $2^{d-1-\gamma}$ is the largest power of two that divides $j - k$ (and this notion is well defined because we are working over $Z_{2^{d-1}}$). Since $J_{2^{\gamma - 1}j}$ and $J_{2^{\gamma - 1}k}$ are antipodes, the cubes C_j and C_k are disjoint. The indices of these cubes are also taken to be elements of $Z_{2^{d-1}}$. If $x \in C_k$ is fixed, then it follows from Claim 3.1 that $I_x \cup I_y$ is a priori independent (assuming that we follow the guidelines set forth in (3.2)) unless there exists $\kappa \in \{-1, 0, 1\}$ such that

$$ y \in C_{k+\kappa} \quad \text{and} \quad h_d \cdot \rho(f(y - x)) = \kappa m. $$

We now turn to the definition of the expansion S_x and translation t_x used for each $x \in C_k$. Let $r' = r - 1$. We first define two auxiliary sequences: a sequence $\alpha_0, \ldots, \alpha_{2^{d-1}}$ of nonnegative integers and a sequence $\beta_0, \ldots, \beta_{2^{d-1}}$ of 0’s and 1’s.
These are defined recursively: set $\alpha_0 = \beta_0 = 0$, and, for $k = 1, \ldots, 2^{d-1}$, define α_k and β_k as follows:

$$2^{d-1}(\alpha_{k-1} + \beta_{k-1}) - kr' \begin{cases} \geq -2^{d-1} + r'/2 \Rightarrow \beta_k = 0, \\
< -2^{d-1} + r'/2 \Rightarrow \beta_k = 1,
\end{cases}$$

and $\alpha_k = \alpha_{k-1} + \beta_{k-1} + \beta_k$.

This sequence has a number of important properties.

Claim 3.2.

$$-2^{d-1} < 2^{d-1}\alpha_k - kr' < 2^{d-1} \quad \text{for} \quad k = 0, \ldots, 2^{d-1}. $$

Proof. We first note the following:

$$(3.8) \quad \beta_k = 0 \quad \Rightarrow \quad 2^{d-1}\alpha_k - kr' \geq -2^{d-1} + r'/2,$$

$$(3.9) \quad \beta_k = 1 \quad \Rightarrow \quad 2^{d-1}\alpha_k - kr' < r'/2.$$

Assume for the sake of contradiction that k is an index for which

$$(3.10) \quad 2^{d-1}\alpha_k - kr' \leq -2^{d-1} \quad \text{and} \quad 2^{d-1}\alpha_{k-1} - (k-1)r' > -2^{d-1}.$$

It follows from these inequalities that $2^{d-1}(\beta_{k-1} + \beta_k) - r' < 0$, and it follows from (3.8) that $\beta_k = 1$. Therefore, $\beta_{k-1} = 0$ and $r' > 2^{d-1}$. Since $\beta_{k-1} = 0$, (3.8) implies that $2^{d-1}\alpha_{k-1} - (k-1)r' > -2^{d-1} + r'/2$. This inequality and (3.9) give $2^{d-1}(\beta_k + \beta_{k-1}) - r' = 2^{d-1} - r' < -r'/2$, a contradiction. A similar argument establishes the upper bound.

Also note that for $k = 1, \ldots, 2^{d-1}$ we have

$$(3.11) \quad \alpha_k = 2 \sum_{j=0}^{k-1} \beta_j + \beta_k.$$

It follows that we have

$$(3.12) \quad \alpha_k \text{ is even} \iff \beta_k = 0.$$

We included $\alpha_{2^{d-1}}$ and $\beta_{2^{d-1}}$ in this sequence because it will be important to note below (since the indices of the cubes are given by the elements of $\mathbb{Z}_{2^{d-1}+1}$) that $\beta_0 = \beta_{2^{d-1}}$. This observation follows from Claim 3.2 and (3.11).

We are now ready to define the S_x’s and t_x’s. Again, we need to introduce some new notation. For $-2^{d-1} < z < 2^{d-1}$ an even integer let 1_z be the vector in \mathbb{Z}^d_m of the form $\pm 1_A$ such that $A \subseteq \{2, \ldots, d-1\}$ and

$$ (0, 2^{d-2}, 2^{d-3}, \ldots, 2, 0) \cdot 1_z = z.$$

For $x \in C_k$ we set

$$ S_x = \begin{cases} E_{t+1} & \text{if } \beta_k = 1, \\
E_l & \text{if } \beta_k = 0,
\end{cases}$$

and $t_x = 1_{\alpha_k 2^{d-1} - kr'}$.

This completes the definition of I_m. It remains to show that $I_x \cup I_y$ is an independent set for $x \neq y$. By (3.7) it suffices to consider two cases: $x, y \in C_k$ and $h_d \cdot \rho(f(y-x)) = 0$, and $x \in C_k$, $y \in C_{k+1}$ and $h_d \cdot \rho(f(y-x)) = m$. In both cases we appeal to (3.3). If $x, y \in C_k$, then $t_x = t_y$ and

$$ S_x - S_y + t_x - t_y - N \subseteq [2l - 1, 2l + 1] \times [-1, 1]^{d-1} =: \mathcal{B}^1.$$
However \(h_d \cdot \rho(z) \neq 0 \) for all nonzero \(z \in \mathcal{B}_1 \). Suppose, on the other hand, that \(x \in \mathcal{C}_k, y \in \mathcal{C}_{k+1} \) and \(z = f(y - x) \in S_x - S_y + t_x - t_y - N \). We have

\[
\begin{align*}
 h_d \cdot \rho(z) &\leq (2l - 2 + \beta_k + \beta_{k+1})2^{d-1} + (\alpha_k 2^{d-1} - kr') \\
 &\quad - (\alpha_{k+1} 2^{d-1} - (k + 1)r') + 2^d - 1 \\
 &= l2^d + (\alpha_k + \beta_k + \beta_{k+1} - \alpha_{k+1}) 2^{d-1} + r' - 1 \\
 &= l2^d + r' - 1 < m.
\end{align*}
\]

Therefore, \(I_m \) is an independent set.

4. Phase II

In this phase we expand our construction to \(I'_m \supseteq I_m \). As in the previous phase, we set \(I'_m = \bigcup_{x \in \mathbb{Z}^d_m} I_x \), where \(I_x \) is an independent set in \(\mathbb{Z}^d_m \) of the form \(I_x = f(x) + S_x + t_x \). The set \(I_x \) is taken to be what was given in Phase I for \(x \) in

\[
\mathcal{C} := \bigcup_{k=0}^{2^d-1} \mathcal{C}_k.
\]

The general guidelines for forming \(I_x \) for \(x \notin \mathcal{C} \) are as follows: \(S_x = E_{l-3} \) and \(t_x \in \{1_A\}, \{-1_A\}, \{1_A, -1_A\} : A \subseteq \{2, \ldots, d-1\} \).

Note that, while \(t_x \) may now consist of more than one vector, we still have \(\|t_x\| \leq 3 \) for arbitrary \(x, y \in \mathbb{Z}^d_m \). Furthermore, if \(x \notin \mathcal{C} \), then, since we take \(S_x \) to be so small, the vertex set \(I_x \cup I_y \) is a priori independent unless

\[
y \in x + \{-1, 0, 1\}^{d-1} \quad \text{and} \quad h_d \cdot \rho(f(y - x)) = 0.
\]

We form a partition of \(\mathbb{Z}^{d-1} \setminus \mathcal{C} \). As noted above, we will always set \(S_x = E_{l-3} \); the partition will be used to determine the \(t_x \)'s (\(t_x \) is not a constant over every part in the partition). We define the partition by giving a collection of \(2^{d-1}(2^{d-1} - 1) \) parts. For \(x \in \mathbb{Z}^{d-1}_m \setminus \mathcal{C} \) that do not lie in any of these parts we set \(I_x = \emptyset \).

The partition contains one part for each ordered pair of cubes \((\mathcal{C}_j, \mathcal{C}_k) \) where \(j \neq k \). Recall that \(\gamma = \gamma_{j,k} \) is given by \(2^{l-1}j + 2^{d-2} = 2^{l-1}k \), that \(J_{2^l-1} \) and \(J_{2^l-1} \) are antipodal, and that coordinate \(\gamma \) is the only coordinate in which \(\mathcal{C}_j \) and \(\mathcal{C}_k \) are antipodal. Define

\[
\mathcal{D}_{j,k} = (J_j \cap J_k)' \times \cdots \times (J_{2^{l_1}-1} \cap J_{2^{l_2}-1})' \times X_{2^{l_1}-1}
\]

\[
\times (J_{2^{l_1}} \cap J_{2^{l_2}})' \times \cdots \times (J_{2^{l_3}} \cap J_{2^{l_4}})'
\]

where \([a, b]' = [a + 1, b - 1] \) and \(X_i \) is one of the short intervals that lie between \(J_i \) and its antipode:

\[
X_i = [b_i + 1, a_i + 2^{d-2} - 1] \quad \text{for} \quad i = 0, \ldots, 2^{d-1} - 1.
\]

Note that we actually have \(2^{i-1}j = 2^{i-1}k \) for \(i > \gamma \) (i.e. the intersection symbol in the definition of \(\mathcal{D}_{j,k} \) could technically be removed for all coordinates after coordinate \(\gamma \)) and that we have

\[
i, j, k \quad \text{distinct and} \quad \gamma_{i,j} = \gamma_{j,k} \Rightarrow \gamma_{i,k} \neq \gamma_{i,j}.
\]

Claim 4.1. If \((j, k) \neq (j', k') \), then \(\mathcal{D}_{j,k} + N \) and \(\mathcal{D}_{j', k'} \) are disjoint.
Proof. Suppose \(j' \neq j \). Let \(\gamma' = \gamma_{j',j} \). Since the intervals \(J_{2^{\gamma'-1}j} \) and \(J_{2^{\gamma'-1}j'} \) are antipodal, the intervals \(J'_{2^{\gamma'-1}j} \cdot X_{2^{\gamma'-1}j} \), \(J'_{2^{\gamma'-1}j'} \) and \(X_{2^{\gamma'-1}j} \) are not only pairwise disjoint but also nonadjacent on the circle \(\mathbb{Z}_m \). Since coordinate \(\gamma' \) of elements of \(D_{j,k} \) lie in the first two of these sets and coordinate \(\gamma' \) of elements of \(D_{j',k'} \) lie in the latter two of these sets, \(D_{j,k} + N \) and \(D_{j',k'} \) are disjoint.

Suppose \(j = j' \) and \(k \neq k' \). Let \(\gamma = \gamma_{j,k} \) and \(\gamma' = \gamma_{j,k'} \). It follows from (1.2) that if \(\gamma = \gamma' \), then there exists a coordinate other than \(\gamma \) in which \(C_k \) and \(C_{k'} \) are antipodal. In this case \(D_{j,k} + N \) and \(D_{j',k'} \) are clearly disjoint. If, on the other hand, \(\gamma \neq \gamma' \), then coordinate \(\gamma' \) of elements of \(D_{j,k} + N \) are contained in \(J_{2^{\gamma'-1}j} \) while coordinate \(\gamma' \) of elements of \(D_{j',k'} \) are contained in \(X_{2^{\gamma'-1}j} \).

Claim 4.2. If \(i,j,k \) are distinct, then \(D_{j,k} + N \) and \(C_i \) are disjoint.

Proof. Let \(\gamma = \gamma_{j,k} \) and assume without loss of generality that \(\gamma' := \gamma_{i,j} \neq \gamma \) (note that we have applied (1.2)). The claim follows from the fact that \(C_i \) and \(C_j \) are antipodal in coordinate \(\gamma' \).

The cube \(D_{j,k} \) is, in a sense, isolated from most of the rest of \(\mathbb{Z}_m^{d-1} \). It follows from Claims 4.1 and 1.2 and 1.1 that if \(x \in D_{j,k} \), then \(I_x \cup I_y \) is a priori independent unless \(y \in D_{j,k} \cup C_j \cup C_k \).

We henceforth consider a fixed \(D_{j,k} \). Let \(t^j \) be the translation \(t \) assigned to \(x \in C_j \), and \(t^k \) be the translation assigned to elements of \(C_k \) and \(\gamma = \gamma_{j,k} \). We have, in \(\mathbb{Z}_m^{d-1} \),

\[(0,2^{d-2}, \ldots, 2, 0) \cdot (t^k - t^j) = jr' - kr' \]

and that \(2^{d-\gamma} \) divides this difference. It follows that \(t = (t_1, \ldots, t_d) = t^k - t^j \) has a very special form: either \(t_{\gamma+1}, \ldots, t_d = 0 \) or there exists \(\delta \geq \gamma + 1 \) and \(\eta \in \{-1, 1\} \) such that \(t_{\gamma+1} = \ldots = t_{\delta-1} = \eta, t_\delta = 2\eta \) and \(t^k_\delta + t^j_\delta = t^k_{\delta+1} = \ldots = t^k_d = t^j_d = 0 \). Define

\[t^{\beta;\gamma} = \left(0, \ldots, 0, t^j_{\gamma+1}, t^j_{\gamma+2}, \ldots, t^j_d \right) \]

We consider four cases. While the definition of the \(t^{\beta;\gamma} \)'s is very delicate, the proof of independence is based on very simple observations concerning \(f(y) \) for \(y \in N \). One of these simple observations is codified in the following claim (which is presented without proof).

Claim 4.3. If \(x = (x_1, \ldots, x_{d-1}) \in N \cap \mathbb{Z}_m^{d-1}, x_i \neq 0 \) and \(v = (v_1, \ldots, v_d) = f(x) \), then there exists \(j > i \) such that \(v_j \in \{-2, 2\} \).

Throughout the cases we consider \(x \in D_{j,k} \) and \(y \in (x + N) \cap (C_j \cup D_{j,k} \cup C_k) \), \(y \neq x \). For such a pair we use the notation \(B_{x,y} = S_x - S_y + t_x - t_y + N \).

Case 1. \(t_{\gamma+1}, \ldots, t_d = 0 \).

Here we set \(t_x = \{ t^{j;\gamma} \} \) for all \(x \in D_{j,k} \). We have

\[B_{x,y} = \begin{cases} [-2l + 3, 2l - 3] \times [-2, 2]^{\gamma-1} \times [-1, 1]^{d-\gamma} & \text{if } y \in C_j \cup C_k, \\ [-2l + 7, 2l - 7] \times [-1, 1]^{d-1} & \text{if } y \in D_{j,k}. \end{cases} \]

If \(y \in D_{j,k} \), then it is clear that no nonzero \(z \in B_{x,y} \) satisfies \(h_d \cdot \rho(z) = 0 \). If \(y \in C_j \cup C_k \), then coordinate \(\gamma \) of \(y - x \) is nonzero and it follows from Claim 4.3 that \(f(y - x) \notin B_{x,y} \). Therefore \(I_x \cup I_y \) is an independent set.

Case 2. \(\delta \neq \gamma + 1 \).
Here we set $t_x = \{t^i : y\}$ for all $x \in D_{j,k}$. Define

$B^1 = [-2l + 3, 2l - 3] \times [-2, 2]^{\gamma - 1} \times [-1, 1]^{d - \gamma},$

$B^2 = [-2l + 7, 2l - 7] \times [-1, 1]^{d - 1}$ and

$B^3 = [-2l + 3, 2l - 3] \times [-2, 2]^{\gamma - 1} \times (-\eta + [-1, 1])^{\delta - \gamma - 1}$

$\times (-2\eta + [-1, 1]) \times [-1, 1]^{d - \delta}.$

If $y \in C_j$, then $B_{x,y} \subseteq B^1$ and $y_\gamma = x_\gamma - 1$. It then follows from Claim 4.3 that $f(y - x) \notin B_{x,y}$. If $y \in D_{j,k}$, then $B_{x,y} \subseteq B^2$, but there is clearly no nonzero $v \in B^2$ such that $h_d \cdot \rho(v) = 0$.

Suppose $y \in C_k$. In this case $B_{x,y} \subseteq B^3$. Assuming that $y \in x + N$ and $f(y - x) \notin B^3$, we work backwards through the coordinates to attain conditions on y. Note first that $y_i = x_i$ for $i = d - 1, \ldots, \delta$. It then follows that $y_{\delta - 1} = x_{\delta - 1} + \eta$ and $y_i = x_i$ for $i = \delta - 2, \ldots, \gamma$. However, $y_\gamma = x_\gamma - 1$.

Thus, $I_x \cup I_y$ is an independent set.

Case 3. $\delta = \gamma + 1$ and $\eta = 1$.

Note that $t_{\gamma + 1}^i = -1$ and $t_{\gamma + 1}^k = 1$. For $x = (x_1, \ldots, x_{d-1}) \in D_{j,k}$ we set

$t_x = \begin{cases}
\{e_{\gamma + 1}\} & \text{if } x_\gamma \neq b_{\gamma - 1 - j}, \\
\{e_{\gamma + 1}, -e_{\gamma + 1}\} & \text{if } x_\gamma = b_{\gamma - 1 - j} + 1.
\end{cases}$

Subcase 3.1. $x_\gamma = b_{\gamma - 1 - j} + 1$.

Since $x + N$ does not intersect C_k we have $y \in C_j \cup D_{j,k}$. Define

$B^1 = [-2l + 3, 2l - 3] \times [-2, 2]^{\gamma - 1} \times [-1, 3] \times [-1, 1]^{d - \delta}.$

$B^2 = [-2l + 7, 2l - 7] \times [-1, 1]^{\gamma - 1} \times [-3, 3] \times [-1, 1]^{d - \delta}$, and

$B^3 = [-2l + 3, 2l - 3] \times [-1, 1]^{\gamma - 1} \times [-3, 1] \times [-1, 1]^{d - \delta}.$

Suppose $y \in C_j$. We have $B_{x,y} \subseteq B^1$ and $y_\gamma = x_\gamma - 1$. By Claim 4.3 if there exists $i > \gamma$ such that $x_i \neq y_i$, then $f(y - x) \notin B^1$. On the other hand, if $x_i = y_i$ for $i = \gamma + 1, \ldots, d - 1$, then coordinate $\gamma + 1$ of $f(y - x)$ is -2 and $f(y - x) \notin B^1$.

Suppose $y \in D_{j,k}$ and $y_\gamma = x_\gamma$. In this case we have $B_{x,y} \subseteq B^2$. Let i be the largest index for which $x_i \neq y_i$. Since $i \neq \gamma$, the vector $f(y - x)$ is not in B^2.

Finally, suppose $y \in D_{j,k}$ and $y_\gamma = x_\gamma + 1$. We have $B_{x,y} \subseteq B^3$. If $z \in B^3$ is nonzero and $h_d \cdot \rho(z) = 0$, then $z_{\gamma + 1} = -2$ and $z_{\gamma + 2}, \ldots, z_d = 0$. However, $f(y - x)$ cannot be such a vector as $y_\gamma = x_\gamma = 1$.

Subcase 3.2. $x_\gamma \neq b_{\gamma - 1 - j} + 1$.

We may assume $y \in D_{j,k} \cup C_k$ and $y_\gamma \neq b_{\gamma - 1 - j} + 1$. We have

$B_{x,y} \subseteq \begin{cases}
[-2l + 1, 2l - 1] \times [-2, 2]^{\gamma - 1} \times [-1, 1]^{d - \gamma} & \text{if } y \in C_k, \\
[-2l + 5, 2l - 5] \times [-1, 1]^{d - 1} & \text{if } y \in D_{j,k},
\end{cases}$

and the proof follows as in Case 1.

Case 4. $\delta = \gamma + 1$ and $\eta = -1$.

Note that $t_{\gamma+1}^j = 1$ and $t_{\gamma+1}^k = -1$. We set
\[I_x = \begin{cases} f(x) + E_{l-3} - e_{\gamma+1} & \text{if } x_\gamma \neq b_{2\gamma-1j} + 1, \\ \emptyset & \text{if } x_\gamma = b_{2\gamma-1j} + 1. \end{cases} \]

The proof that $I_x \cup I_y$ is independent follows as in Case 1.

5. Counting

While a precise reckoning of the number of vertices in \mathcal{I}'_m is possible, we opt for an estimate only precise enough to establish Theorem 1.1. Define
\[\mathcal{D} = \bigcup_{j \neq k} \mathcal{D}_{j,k} \quad \text{and} \quad \mathcal{X} = \bigcup_{i=0}^{2d-1-1} \hat{X}_i \]
where $[a, b] = [a - 1, b + 1]$. We count as follows:
\[|\mathcal{I}'_m| = (l - 3) (|C| + |D|) + 3 |C_k| 2^{d-1} + |C_k| \cdot |\{i : \beta_i = 1\}|. \]

It follows from Claim 3.2 that $\alpha_{d-1} = r'$. It then follows from (3.11) that $\beta_{d-1} = 0$ and from (3.10) that the number of β_i's that equal 1 is $r'/2$. The asymptotic behavior of $|C| + |D|$ follows from
\[x = (x_1, \ldots, x_{d-1}) \in \mathbb{Z}^{d-1} \quad \text{and} \quad |\{i : x_i \in \mathcal{X}\}| \leq 1 \Rightarrow x \in C \cup D. \]

These observations imply that $|\mathcal{I}'_m| = n^d + (d - 1)n^{d-1}/2 + O(n^{d-2})$.

ACKNOWLEDGMENT

I would like to thank Ron Holzman for pointing out a number of errors in an earlier version.

REFERENCES

Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
E-mail address: tbohman@moser.math.cmu.edu

Current address: Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213