Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

$\pi_1$ of Hamiltonian $S^1$ manifolds


Author: Hui Li
Journal: Proc. Amer. Math. Soc. 131 (2003), 3579-3582
MSC (2000): Primary 53D05, 53D20; Secondary 55Q05, 57R19
DOI: https://doi.org/10.1090/S0002-9939-03-06881-3
Published electronically: February 14, 2003
MathSciNet review: 1991771
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $(M, \omega)$ be a connected, compact symplectic manifold equipped with a Hamiltonian $S^1$ action. We prove that, as fundamental groups of topological spaces, $\pi_1(M)=\pi_1(\hbox{minimum})=\pi_1(\hbox{maximum})=\pi_1(M_{red})$, where $M_{red}$ is the symplectic quotient at any value in the image of the moment map $\phi$.


References [Enhancements On Off] (What's this?)

  • 1. M. Atiyah, Convexity and commuting Hamiltonians, Bull. Lond. Math. Soc. 14 (1982), 1-15. MR 83e:53037
  • 2. M. Audin, The Topology of Torus Actions on Symplectic Manifolds, Progress in Mathematics 93, Birkhäuser, Boston (1991). MR 92m:57046
  • 3. R. Bott, Non-degenerate critical manifolds, Ann of Math., 60 (1954), 248-261. MR 16:276f
  • 4. M. Brion and C. Procesi, Action d'un tore dans une vari$\acute{e}$t$\acute{e}$ projective, Operator Algebras, Unitary Representations, Enveloping Algebras, and Invariant Theory, Progress in Mathematics 92, Birkhäuser, Boston (1990). MR 92m:14061
  • 5. W. Chen, A Homotopy Theory of Orbispaces, math. AT/0102020.
  • 6. V. Guillemin and S. Sternberg, Birational equivalence in the symplectic category, Invent. Math. 97, 485-522 (1989). MR 90f:58060
  • 7. J. Milnor, Morse theory, Princeton University Press, 1963. MR 29:634
  • 8. C. M. Marle, Mod$\acute{e}$le d'action hamiltonienne d'un groupe de Lie sur une vari$\acute{e}$t$\acute{e}$ symplectique, Rendiconti del Seminario Matematico 43 (1985), 227-251, Univ. Politechnico, Torino. MR 88a:58075
  • 9. D. McDuff, Examples of simply-connected symplectic non-K$\Ddot{a}$hlerian manifolds, Differential Geometry 20 (1984), 267-277. MR 86c:57036
  • 10. R. Sjamaar and E. Lerman, Stratified symplectic spaces and reduction, Ann. of Math. (2) 134 (1991), no. 2, 375-422. MR 92g:58036
  • 11. Y. Takeuchi and M. Yokoyama, The geometric realizations of the decompositions of 3-orbifold fundamental groups, Topology Appl. 95 (1999) no. 2, 129-153. MR 2000g:57028

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 53D05, 53D20, 55Q05, 57R19

Retrieve articles in all journals with MSC (2000): 53D05, 53D20, 55Q05, 57R19


Additional Information

Hui Li
Affiliation: Department of Mathematics, University of Illinois, Urbana-Champaign, Illinois 61801
Email: hli@math.uiuc.edu

DOI: https://doi.org/10.1090/S0002-9939-03-06881-3
Keywords: Circle action, symplectic manifold, symplectic quotient, Morse theory
Received by editor(s): January 10, 2002
Received by editor(s) in revised form: May 23, 2002
Published electronically: February 14, 2003
Communicated by: Ronald A. Fintushel
Article copyright: © Copyright 2003 American Mathematical Society

American Mathematical Society