\textbf{π}_1 \text{ OF HAMILTONIAN S}^1 \text{ MANIFOLDS}

HUI LI

(Communicated by Ronald A. Fintushel)

Abstract. Let \((M, \omega)\) be a connected, compact symplectic manifold equipped with a Hamiltonian \(S^1\) action. We prove that, as fundamental groups of topological spaces, \(\pi_1(M) = \pi_1(\text{minimum}) = \pi_1(\text{maximum}) = \pi_1(M_{\text{red}})\), where \(M_{\text{red}}\) is the symplectic quotient at any value in the image of the moment map \(\phi\).

Let \((M, \omega)\) be a connected, compact symplectic manifold equipped with a circle action. If the action is Hamiltonian, then the moment map \(\phi : M \to \mathbb{R}\) is a perfect Bott-Morse function. Its critical sets are precisely the fixed point sets \(M_{S^1}\) of the \(S^1\) action, and \(M_{S^1}\) is a disjoint union of symplectic submanifolds. Each fixed point set has even index. By [1], \(\phi\) has a unique local minimum and a unique local maximum. We will use Morse theory to prove

\textbf{Theorem 0.1.} Let \((M^{2n}, \omega)\) be a connected, compact symplectic manifold equipped with a Hamiltonian \(S^1\) action. Then as fundamental groups of topological spaces, \(\pi_1(M) = \pi_1(\text{minimum}) = \pi_1(\text{maximum}) = \pi_1(M_{\text{red}})\), where \(M_{\text{red}}\) is the symplectic quotient at any value in the image of the moment map \(\phi\).

Remark 0.2. The theorem is not true for orbifold \(\pi_1\) of \(M_{\text{red}}\), as shown in the example below. (See [5] or [11] for the definition of orbifold \(\pi_1\).)

Let \(a \in \text{im}(\phi)\), and \(\phi^{-1}(a) = \{x \in M \mid \phi(x) = a\}\) be the level set. Define \(M_a = \phi^{-1}(a)/S^1\) to be the symplectic quotient.

Note that if \(a\) is a regular value of \(\phi\), and if the circle action on \(\phi^{-1}(a)\) is not free, then \(M_a\) is an orbifold, and we have an orbibundle:

\[
\begin{array}{ccc}
S^1 & \hookrightarrow & \phi^{-1}(a) \\
\downarrow & & \downarrow \\
M_a & & \\
\end{array}
\]

(0.1)

If \(a\) is a critical value of \(\phi\), then \(M_a\) is a stratified space ([11]).

Now, let \(S^1\) act on \((S^2 \times S^2, 2\rho \oplus \rho)\) (where \(\rho\) is the standard symplectic form on \(S^2\)) by \(\lambda(z_1, z_2) = (\lambda^2 z_1, \lambda z_2)\). Let 0 be the minimal value of the moment map. Then for \(a \in (1, 2)\), \(M_a\) is an orbifold which is homeomorphic to \(S^2\) and has two \(Z_2\) singularities. The orbifold \(\pi_1\) of \(M_a\) is \(Z_2\), but the \(\pi_1\) of \(M_a\) as a topological space is trivial.

Received by the editors January 10, 2002 and, in revised form, May 23, 2002.

2000 Mathematics Subject Classification. Primary 53D05, 53D20; Secondary 55Q05, 57R19.

Key words and phrases. Circle action, symplectic manifold, symplectic quotient, Morse theory.

©2003 American Mathematical Society

3579
Let \(a \) be a regular or a critical value of \(\phi \). Define
\[
M^a = \{ x \in M \mid \phi(x) \leq a \}.
\]

By Morse theory, we have the following lemmas about how \(M^a \) and \(\phi^{-1}(a) \) change when \(\phi \) doesn't cross or crosses a critical level.

Lemma 0.3 (Theorem 3.1 in [7]). Assume \([a, b] \subset \text{im}(\phi)\) is an interval consisting of regular values. Then \(\phi^{-1}(a) \) is diffeomorphic to \(\phi^{-1}(b) \).

Lemma 0.4 (See [7] and [8]). Let \(c \in (a, b) \) be the only critical value of \(\phi \) in \([a, b]\), \(F \subset \phi^{-1}(c) \) the fixed point set component, \(D^- \) the negative disk bundle of \(F \), and \(S(D^-) \) its sphere bundle. Then \(M^b \) is homotopy equivalent to \(M^a \cup_{S(D^-)} D^- \).

Lemma 0.5. Under the same hypothesis of Lemma 0.4, \(\phi^{-1}(a) \cup_{S(D^-)} D^- \) has the homotopy type of \(\phi^{-1}(c) \).

Proof. If \(F \) is a point, then from the proof of Theorem 3.2 in [7], we can see that the region between \(\phi^{-1}(a) \cup_{S(D^-)} D^- \) and \(\phi^{-1}(c) \) is homotopy equivalent to both \(\phi^{-1}(a) \cup_{S(D^-)} D^- \) and \(\phi^{-1}(c) \). (See pp. 18 and 19 in [7].)

The same idea applies when \(F \) is a submanifold. \(\square \)

This lemma immediately implies the following

Lemma 0.6. Under the same hypothesis of Lemma 0.4, \(M_c \) has the homotopy type of \(M_a \cup_{S(D^-)} D^- / S^1 \).

We will also need

Lemma 0.7. Assume \(F \) is a critical set, \(\phi(F) \in (a, b) \) and there are no other critical sets in \(\phi^{-1}([a, b]) \). If \(\text{index}(F) = 2 \), then there is an embedding \(i \) from \(F \) to \(M_a \) such that \(S(D^-) \) can be identified with the restriction of \(\phi^{-1}(a) \) to \(F \), i.e., we have the following bundle identification:
\[
\begin{array}{ccc}
S^1 & \hookrightarrow & S(D^-) \\
\downarrow & & \downarrow \\
F & \xrightarrow{i} & M_a
\end{array}
\]

Proof. Assume that the positive normal bundle \(D^+ \) of \(F \) has complex rank \(m \). We may assume \(\phi(F) = 0 \). By Lemma 0.3, we can assume \(a = -\epsilon \) and \(b = +\epsilon \) for \(\epsilon \) small. By the equivariant symplectic embedding theorem ([8]), a tubular neighborhood of \(F \) is equivariantly diffeomorphic to \(P \times G(\mathbb{C} \times \mathbb{C}^m) \), where \(G = S^1 \times U(m) \) and \(P \) is a principal \(G \)-bundle over \(F \). The moment map can be written
\[
\phi = -p_0 |z_0|^2 + p_1 |z_1|^2 + \cdots + p_m |z_m|^2,
\]
where \(p_0, p_1, ..., p_m \) are positive integers. Then \(\phi^{-1}(-\epsilon) = P \times G(S^1 \times \mathbb{C}^m) \), \(M_{-\epsilon} = P \times G(S^1 \times \mathbb{C}^m)/S^1 \), \(F = P \times G(S^1 \times 0)/S^1 \subset M_{-\epsilon} \), and \(S(D^-) = P \times G S^1 \) is the restriction of \(\phi^{-1}(\epsilon) \) to \(F \). \(\square \)

We are now ready to prove the theorem.

Proof. Let us put the critical values of \(\phi \) in the order
\[
\text{minimal} = 0 < a_1 < a_2 < \cdots < a_k = \text{maximal}.
\]
First, we prove \(\pi_1(\text{minimum}) = \pi_1(M_{\text{red}}) \).

For \(a \in (0, a_1) \), by the equivariant symplectic embedding theorem, \(\phi^{-1}(a) \) is a sphere bundle over the minimum. Assume the fiber of this sphere bundle is \(S^{2l+1} \) with \(l \geq 0 \). Then \(M_a \) is diffeomorphic to a weighted \(CP^l \) bundle over the minimum.
(possibly an orbifold). The weighted $\mathbb{C}P^l$ is the symplectic reduction of S^{2l+1} by
the S^1 action with different weights. We can easily see that $S^{2l+1} \to$ weighted $\mathbb{C}P^l$
induces a surjection in π_1 since the inverse image of each point is connected. So
the weighted $\mathbb{C}P^l$ is simply connected, hence $\pi_1(M_a) = \pi_1(\text{minimum})$.

Next, let $b \in (a_1, a_2)$, and let $F \subset \phi^{-1}(a_1)$ be the critical set. (If there are other
critical sets on the same level, argue similarly for each connected component.)

By Lemma 0.6 and the Van-Kampen theorem, we have

$$\pi_1(M_a) = \pi_1(M_a) \ast_{\pi_1(S(D^-)/S^1)} \pi_1(D^-/S^1) = \pi_1(M_a),$$

since $S(D^-)/S^1$ is a weighted projectivized bundle over F, and D^-/S^1 is homotopy
equivalent to F, so $\pi_1(S(D^-)/S^1)$ is isomorphic to $\pi_1(D^-/S^1)$.

Similarly, using $-\phi$, we can obtain $\pi_1(M_b) = \pi_1(M_{a_1})$.

By induction on the critical values, and by repeating the argument each time ϕ
crosses a critical level, we see that if $a' \in (a_k-1, a_k)$, then $\pi_1(M_a') = \pi_1(\text{minimum})$.
Similarly to the proof of $\pi_1(M_a) = \pi_1(\text{minimum})$ when $a \in (0, a_1)$, we have
$\pi_1(M_a') = \pi_1(\text{minimum})$.

Therefore we have proved that $\pi_1(M_{\text{red}}) = \pi_1(\text{minimum}) = \pi_1(\text{maximum})$.

Next, we prove $\pi_1(M) = \pi_1(\text{minimum})$.

Consider M^a, for $a \in (0, a_1)$. Since M^a is a complex disk bundle over the
minimum, $\pi_1(M^a) = \pi_1(\text{minimum}) = \pi_1(M_a)$.

Consider $b \in (a_1, a_2)$, and let $F \subset \phi^{-1}(a_1)$ be the critical set.
First assume $\text{index}(F) = 2$. By Lemma 0.4 and the Van-Kampen theorem,

$$\pi_1(M^b) = \pi_1(M^a) \ast_{\pi_1(S(D^-))} \pi_1(D^-) = \pi_1(M^a) \ast_{\pi_1(S(D^-))} \pi_1(F).$$

Consider the fibration

$$S^1 \hookrightarrow S(D^-) \xrightarrow{F}$$

and its homotopy exact sequence

$$\cdots \to \pi_1(S^1) \xrightarrow{f} \pi_1(S(D^-)) \xrightarrow{F} \pi_1(F) \to 0.$$

The map f is surjective. By Lemma 0.7, the image of $\ker(f) = \text{im}(j)$ in $\pi_1(M_a)$
is 0. By induction, $\pi_1(M^a) = \pi_1(M_a)$. So the image of $\ker(f)$ in $\pi_1(M^a)$ is 0.
Hence, $\pi_1(M^b) = \pi_1(M^a) = \pi_1(\text{minimum})$.

If $\text{index}(F) > 2$, then the corresponding map $\pi_1(S(D^-)) \to \pi_1(F)$ is an isomorphism.
So we also have $\pi_1(M^b) = \pi_1(M^a)$.

By induction, we see that $\pi_1(M) = \pi_1(\text{minimum})$.

Remark 0.8. The proof that $\pi_1(\text{minimum}) = \pi_1(M_{\text{red}})$ can be achieved by using
known results about how the reduced space changes after ϕ crosses a critical level.
(See [4], for instance, or [6] where the action is semi-free.) After the first induction
step, when ϕ crosses a critical set F, if $\text{index}(F) = 2$, then M_a is homeomorphic to
M_{a_1}; if $\text{index}(F) > 2$, then M_{a_1} can be obtained from M_a by a blow-up followed
by a blow-down. M_b and M_{a_1} are similarly related. Then we modify the proof of
D. McDuff’s (9) result.

Proposition 0.9. If \tilde{X} is the blow-up of X along a submanifold N, then $\pi_1(\tilde{X}) = \pi_1(X)$.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Acknowledgement

I genuinely thank Susan Tolman for carefully reading this paper, for making corrections and for helping to improve the proof of the theorem.

References

Department of Mathematics, University of Illinois, Urbana-Champaign, Illinois 61801
E-mail address: hli@math.uiuc.edu