CIRCLE MAPS HAVING AN INFINITE ω-LIMIT SET WHICH CONTAINS A PERIODIC ORBIT HAVE POSITIVE TOPOLOGICAL ENTROPY

NAOTSUGU CHINEN

(Communicated by Ronald A. Fintushel)

Abstract. Let f be a continuous map from the circle to itself. The main result of this paper is that the topological entropy of f is positive if and only if f has an infinite ω-limit set which contains a periodic orbit.

1. Introduction

Let f be a continuous map from a continuum X to itself. We denote the n-fold composition f^n of f with itself by $f \circ \cdots \circ f$ and f^0 the identity map. Let x be a point of X. We define the orbit $\text{Orb}(x; f)$ by $f \circ \cdots \circ f_n(x)$, and we define the ω-limit set of x to be the set $\omega(x; f) = \{y \in X\}$ for each neighborhood V of y and each positive integer n, $V \cap \text{Orb}(f^n(x); f)$ is nonempty}. It is known that $\omega(x; f)$ is nonempty and strongly invariant, i.e. $f(\omega(x; f)) = \omega(x; f)$. See [BC, p.72] for details. If $\omega(x; f)$ is finite, by [BC, Lemma IV4, p.72], $\omega(x; f)$ is a periodic orbit of some point.

Let z be a periodic point of f. The unstable set of z is defined to be the set $W(z; f) = \{x \in X\}$ for any neighborhood V of z, $x \in f^k(V)$ for some $k > 0$. A point y is homoclinic for f if there exists a point $z \neq y$ such that $f^n(z) = z$ for some $n > 0$, $y \in W(z; f^n)$ and $f^k(y) = z$ for some $k > 0$. This definition of homoclinic points first appeared in [B]. A point $x \in X$ is a nonwandering point for f if for any open set U containing x there exists $n > 0$ such that $f^n(U) \cap U \neq \emptyset$.

The following theorem is well known.

Theorem 1.1. Let f be a continuous map from a compact interval I to itself. The following statements are equivalent:

(a) f has positive topological entropy,
(b) f^n is strictly turbulent for some positive integer n,
(c) f has a nonwandering homoclinic point, and
(d) for some $c \in I$, $\omega(c; f)$ properly contains a periodic orbit.

We can consider the following theorem, analogous to the corresponding conditions in Theorem 1.1.

Theorem 1.2. Let \(f \) be a continuous map from the circle \(S^1 \) to itself. The following statements are equivalent:

(a) \(f \) has positive topological entropy,
(b) \(f^n \) is strictly turbulent for some positive integer \(n \),
(c) \(f \) has a nonwandering homoclinic point, and
(d) for some \(c \in S^1 \), \(\omega(c, f) \) properly contains a periodic orbit.

See [BC] p.229 for strictly turbulent of circle maps. Although the aim of this paper is to prove Theorem 1.2, it is known that (a), (b) and (c) are equivalent (see [BC] p.229 or [BCMN] Theorem B+, p.529) for details) and that conditions (a), (b) and (c) imply condition (d) (see [BC] p.230 for details). Therefore, in this paper, we prove that condition (d) implies condition (a). This is the answer of the question in [BC] p.230).

2. **Definitions**

Notation 2.1. Let \(Y \) be a subspace of a space \(X \), and let \(\text{int} \ Y \) and \(\overline{\text{Cl}} \ Y \) denote the interior and the closure of \(Y \) in a space \(X \), respectively.

Definition 2.2. Let \(f \) be a continuous map from a space \(X \) to itself. A point \(x \in X \) is a fixed point for \(f \) if \(f(x) = x \). A point \(x \in X \) is a periodic point of period \(n \geq 1 \) for \(f \) if \(f^n(x) = x \). We denote the sets of fixed points, periodic points and nonwandering points for \(f \) by \(\text{F}(f) \), \(\text{P}(f) \) and \(\Omega(f) \), respectively.

Definition 2.3. Let us denote a subspace \(\{z||z| = 1\} \) of the complex plane, i.e., the circle, by \(S^1 \). Let \(x \) and \(y \) be two distinct points of \(S^1 \). We denote the closed arc from \(x \) counterclockwise to \(y \) by \([x, y] \), and we denote \((x, y) = [x, y] \setminus \{x, y\} \), \((x, y) = [x, y] \setminus \{x\} \) and \((x, y) = [x, y] \setminus \{y\} \).

Let \(\pi \) be the canonical projection from the real line onto \(S^1 \) defined by \(\pi(t) = e^{2\pi ti} \), \(\tilde{x} \) and \(\tilde{y} \) two points of the real line such that \(\tilde{y} \in (\tilde{x}, \tilde{x}+1) \), \(\pi(\tilde{x}) = x \) and \(\pi(\tilde{y}) = y \). We see that \(\pi([\tilde{x}, \tilde{y}]: [\tilde{x}, \tilde{y}] \rightarrow [x, y] \) is a homeomorphism. Every continuous map \(f \) from the circle \(S^1 \) to itself has countable many lifts, i.e., continuous maps \(\tilde{f} \) from the real line to itself satisfying \(f \circ \pi = \pi \circ \tilde{f} \).

Definition 2.4. Let \(p \) be a fixed point of a continuous map \(f \) from \(S^1 \) to itself. If \(V \) is a neighborhood of \(p \) in \([p, -p) \) (in \((-p, p) \), respectively), we say \(V \) is an \(R \)-neighborhood of \(p \) (\(L \)-neighborhood of \(p \), respectively). Let \(S = R, L \). The \(S \)-sided unstable manifold of \(p \) is defined by

\[W(p, f, S) = \{ x \in S^1 | \text{for any } S \text{-neighborhood } V \text{ of } p, x \in f^k(V) \text{ for some } k > 0 \} \]

Let \(\tilde{p} \) be a fixed point of a continuous map \(\tilde{f} \) from the real line to itself. If \(\tilde{V} \) is a neighborhood of \(\tilde{p} \) in \([\tilde{p}, \tilde{p} + 1) \) (in \((\tilde{p} - 1, \tilde{p}) \), respectively), we say \(\tilde{V} \) is an \(R \)-neighborhood of \(\tilde{p} \) (\(L \)-neighborhood of \(\tilde{p} \), respectively). The \(S \)-sided unstable manifold of \(\tilde{p} \) is defined by \(W(\tilde{p}, \tilde{f}, S) = \{ \tilde{x} \} \) for any \(S \)-neighborhood \(\tilde{V} \) of \(\tilde{p}, \tilde{x} \in \tilde{f}^k(\tilde{V}) \) for some \(k > 0 \).

We see that \(W(p, f) = W(p, f, R) \cup W(p, f, L) \) and that \(W(\tilde{p}, \tilde{f}) = W(\tilde{p}, \tilde{f}, R) \cup W(\tilde{p}, \tilde{f}, L) \).
3. Elementary lemmas

By [BC, Proposition II 2, p.48], we have the following lemma.

Lemma 3.1. Let \tilde{f} be a continuous map from the real line to itself and $\tilde{z} \in F(\tilde{f})$.

1. If $W(\tilde{z}, \tilde{f}, L) \cap (\tilde{z}, \infty) \neq \emptyset$, then $W(\tilde{z}, \tilde{f}, R) \subset W(\tilde{z}, \tilde{f}, L)$.
2. If $W(\tilde{z}, \tilde{f}, L) \cap (\infty, \tilde{z}) = \emptyset$, then $W(\tilde{z}, \tilde{f}, L) = \{\tilde{z}\}$ or $W(\tilde{z}, \tilde{f}, R)$.
3. If $W(\tilde{z}, \tilde{f}, R) \cap (\infty, \tilde{z}) \neq \emptyset$, then $W(\tilde{z}, \tilde{f}, L) \subset W(\tilde{z}, \tilde{f}, R)$.
4. If $W(\tilde{z}, \tilde{f}, R) \cap (\tilde{z}, \infty) = \emptyset$, then $W(\tilde{z}, \tilde{f}, L) = \{\tilde{z}\}$ or $W(\tilde{z}, \tilde{f}, R)$.

By [BC, Proposition II 1 and 3] and [BCMN, Lemma 1], we have the following lemma.

Lemma 3.2. Let X be either a compact interval or the circle or the real line, f a continuous map from X to itself, $z \in F(f)$ and $S = R, L$. Then $W(z, f, S)$ and $W(z, f)$ are connected, $f(W(z, f, S)) = W(z, f, S)$ and $f(W(z, f)) = W(z, f)$.

Lemma 3.3. Let f be a continuous map from the circle S^1 to itself, $z \in F(f)$ and $S = R, L$. Also, let \tilde{f} be the lift of f with $\tilde{z} \in F(\tilde{f})$ satisfying $\pi(\tilde{z}) = z$. Then $\pi(W(z, f, S)) = W(z, f, S)$ and $\pi(W(z, f)) = W(z, f)$.

Proof. We give the proof for the first assertion. Let $\tilde{x} \in W(z, \tilde{f}, S)$ and U a small S-neighborhood of z. There exists a small S-neighborhood \tilde{V} of \tilde{z} with $\pi(\tilde{V}) \subset U$. Since $\tilde{x} \in W(z, \tilde{f}, S)$, we have a positive integer n such that $\tilde{x} \in f^n(\tilde{V})$, thus $\pi(\tilde{x}) \in f^n(\pi(\tilde{V})) \subset f^n(U)$. We conclude that $\pi(\tilde{x}) \in W(z, f, S)$ and that $\pi(W(z, f, S)) \subset W(z, f, S)$.

Let $x \in W(z, f, S) \setminus \{z\}$ and let $\{U_n\}_{n=1}^{\infty}$ be a sequence of small connected S-neighborhoods of z with $\bigcap_{n=1}^{\infty} U_n = \{z\}$. Since $\pi(U_n)$ is a small S-neighborhood of z for each n, there exists a positive integer k_n such that $x \in f^{k_n}(\pi(U_n))$. Since $x \in \pi(f^{k_n}(U_n))$, we see that $\pi^{-1}(x) \cap f^{k_n}(U_n) \neq \emptyset$. Thus there exist $\tilde{x} \in \pi^{-1}(x) \cap (\tilde{z} - 1, \tilde{z} + 1)$ and a sequence ℓ_1, ℓ_2, \ldots of positive integers such that $\tilde{x} \in f^{\ell_n}(U_{\ell_n})$ for each n. This shows that $\tilde{x} \in W(z, \tilde{f}, S)$ and that $\pi(W(z, f, S)) \subset W(z, f, S)$.

Corollary 3.4. Let f be a continuous map from the circle S^1 to itself with lift \tilde{f}. If \tilde{y} is a homoclinic point for \tilde{f}, then $y = \pi(\tilde{y})$ is a homoclinic point for f.

Lemma 3.5. Let f be a continuous map from the circle S^1 to itself with lift \tilde{f} and $z \in F(\tilde{f})$, $S, S' \in \{R, L\}$, and \tilde{y}, \tilde{z}' two points of the real line satisfying that $\tilde{y} \in W(z, \tilde{f}, S)$, $\pi(\tilde{z}') = \pi(\tilde{z}) \neq \pi(\tilde{y})$ and $\tilde{f}^n(\tilde{y}) = \tilde{z}'$ for some $n \geq 1$. If $\tilde{f}^n(\tilde{U})$ contains an S-neighborhood of \tilde{z}' for each S'-neighborhood \tilde{U} of \tilde{y}, then $y = \pi(\tilde{y})$ is a nonwandering homoclinic point for f.

Proof. We notice that $z = \pi(\tilde{z}) \in F(f)$ and that $f^n(y) = \pi(\tilde{f}^n(\tilde{y})) = \pi(\tilde{z}') = z$. It follows from Lemma 3.3 that $y \in W(z, f, S) = W(z, f, S) \subset W(z, f)$. It suffices to show that $y \in \Omega(f)$. Let U be a small S'-neighborhood of y and \tilde{U} an S'-neighborhood of \tilde{y} with $\pi(\tilde{U}) = U$. From the assumption, $\tilde{f}^n(\tilde{U})$ contains some small S-neighborhood \tilde{V} of \tilde{z}'. Since $\pi(\tilde{z}') = \pi(\tilde{z})$, there exists the integer δ such that $\tilde{z}' = \tilde{z} + \delta$. Set $\tilde{V} - \delta = \{\tilde{x} - \delta | \tilde{x} \in \tilde{V}\}$. We notice that $\tilde{V} - \delta$ is an S-neighborhood of \tilde{z} and that $\pi(\tilde{V} - \delta) = \pi(\tilde{V})$ is an S-neighborhood of z. Also, since $\tilde{y} \in W(z, \tilde{f}, S)$, we have a positive integer m such that $\tilde{y} \in \tilde{f}^m(\tilde{V} - \delta)$. This
shows that \(y \in \pi(\tilde{f}^n(\tilde{V} - \delta)) = f^m(\pi(\tilde{V} - \delta)) = f^m(\pi(\tilde{V})) \subset f^m(\pi(\tilde{f}^n(\tilde{U}))) = f^{m+n}(\pi(\tilde{U})) = f^{m+n}(U) \), thus, \(y \in \Omega(f) \).

\[\square \]

4. A proof of Theorem 1.2

Lemma 4.1. Let \(f \) be a continuous map from the circle \(S^1 \) to itself. If there exists a point \(c \in S^1 \) such that \(\omega(c, f) \) is infinite containing some fixed point, then \(f \) has positive topological entropy.

Proof. Set \(c_m = f^m(c) \) for each \(m \). Choose \(z \in \omega(c, f) \cap F(f) \). We have an increasing sequence \(\{n_k\} \) of positive integers, \(S = R, L \) and an \(S \)-neighborhood \(U_z \) of \(z \) such that \(c_{n_k} \in U_z \setminus \{z\} \) for all \(k \) and that \(\lim_{k \to \infty} c_{n_k} = z \). Since \(\omega(c, f) \) is infinite, we see that \(W(z, f, S) \neq \emptyset \).

We show that \(\text{Orb}(c, f) \cap W(z, f, S) = \emptyset \). We suppose that \(\text{Orb}(c, f) \cap W(z, f, S) = \emptyset \). Since \(W(z, f, S) \) is connected by Lemma 3.2, there exist a point \(x \) of \(\omega(c, f) \) and a compact interval \(A \) such that \(\omega(c, f) \subset A \), \(A \setminus \text{int} A = \{z, x\} \) and \(W(z, f, S) \subset S^1 \setminus \text{int} A \). Since \(\omega(c, f) \) is finite, by the definition of \(W(z, f, S) \), there exists a point \(x' \in \text{CIW}(z, f, S) \cap \text{int} A \). This is a contradiction.

Since \(\text{Orb}(c, f) \cap W(z, f, S) \neq \emptyset \), Lemma 3.2 implies that \(\omega(c, f) \subset \text{CIW}(z, f, S) \). We suppose that \(\text{CIW}(z, f, S) \neq S^1 \). By Lemma 3.2, we see that \(\text{CIW}(z, f, S) \) is a compact interval. Since \(\text{Orb}(c, f) \cap W(z, f, S) \neq \emptyset \), we have \(c_m \in W(z, f, S) \) for some \(m \). Since \(\omega(c, f) = \omega(c, f) \) and \(f(\text{CIW}(z, f, S)) = \text{CIW}(z, f, S) \), we have \(\omega(c, f) = \omega(c_m, f| \text{CIW}(z, f, S)) \), where \(f| \text{CIW}(z, f, S) : \text{CIW}(z, f, S) \to \text{CIW}(z, f, S) \) is the restriction of \(f \). From Theorem 1.1, \(f| \text{CIW}(z, f, S) \) has positive topological entropy. We conclude from [BC] Proposition VIII 5, p.193 that \(f \) has positive topological entropy. We may assume that \(\text{CIW}(z, f, S) = S^1 \).

Since \((a)\) and \((c)\) in Theorem 1.2 are equivalent, we are going to show that \(f \) has a nonwandering homoclinic point.

Let \(\tilde{f} \) be the lift of \(f \) with \(\tilde{z} \in F(\tilde{f}) \) satisfying \(\pi(\tilde{z}) = z \). We suppose that \(\text{CIW}(\tilde{z}, \tilde{f}, S) \) is compact, i.e., bounded. Since \(\pi(\text{CIW}(\tilde{z}, \tilde{f}, S)) = \text{CIW}(z, f, S) = S^1 \) by Lemma 3.3, there exists a point \(\tilde{c} \in \text{CIW}(\tilde{z}, \tilde{f}, S) \) satisfying \(\pi(\tilde{c}) = c \). Set \(\tilde{c}_m = f^m(\tilde{c}) \) for each \(m \). Let \(\tilde{f} | \text{CIW}(\tilde{z}, \tilde{f}, S) : \text{CIW}(\tilde{z}, \tilde{f}, S) \to \text{CIW}(\tilde{z}, \tilde{f}, S) \) be the restriction of \(\tilde{f} \). Since \(\pi(\tilde{c}_m) = c_m \) for each \(m \), we have \(\pi(\omega(\tilde{c}, \tilde{f}| \text{CIW}(\tilde{z}, \tilde{f}, S))) \subset \omega(c, f) \). Let \(x \in \omega(c, f) \). We have a sequence \(n_1, n_2, \ldots \) of positive integers such that \(\lim_{k \to \infty} c_{n_k} = x \). Since \(\text{CIW}(\tilde{z}, \tilde{f}, S) \) is compact, there exist a subsequence \(n_{i_1}, n_{i_2}, \ldots \) and \(\tilde{x} \in \text{CIW}(\tilde{z}, \tilde{f}, S) \) such that \(\lim_{k \to \infty} \tilde{c}_{n_{i_k}} = \tilde{x} \). Since \(\tilde{x} \in \omega(\tilde{c}, \tilde{f}| \text{CIW}(\tilde{z}, \tilde{f}, S)) \) and \(\pi(\tilde{x}) = x \), we see that \(\pi(\omega(\tilde{c}, \tilde{f}| \text{CIW}(\tilde{z}, \tilde{f}, S))) \subset \omega(c, f) \) and conclude that \(\pi(\omega(\tilde{c}, \tilde{f}| \text{CIW}(\tilde{z}, \tilde{f}, S))) = \omega(c, f) \). This shows that \(\omega(\tilde{c}, \tilde{f}| \text{CIW}(\tilde{z}, \tilde{f}, S)) \) properly contains a periodic orbit. By Theorem 1.1, \(\tilde{f} | \text{CIW}(\tilde{z}, \tilde{f}, S) \) has a homoclinic point \(\tilde{y} \in \Omega(\tilde{f}) | \text{CIW}(\tilde{z}, \tilde{f}, S) \). Since \(\pi(\Omega(f| \text{CIW}(\tilde{z}, \tilde{f}, S))) \subset \pi(\Omega(f)) \subset \Omega(f) \), by Corollary 3.4, \(f \) has a homoclinic point \(\pi(\tilde{y}) \in \Omega(f) \). We may assume that \(\text{CIW}(\tilde{z}, \tilde{f}, S) \) is unbounded.

We suppose that \(W(\tilde{z}, \tilde{f}, S) \) contains some small open connected \(S \)-neighborhood \(\tilde{U} \) of \(\tilde{z} \). Since \(\text{CIW}(\tilde{z}, \tilde{f}, S) \) is unbounded containing \(\tilde{z} \), we have \(\delta = 1, -1 \) such that \(\tilde{z} + \delta \in W(\tilde{z}, \tilde{f}, S) \). We suppose that \(S = L \). Since \(\tilde{z} + \delta \in W(\tilde{z}, \tilde{f}, L) \), there exists a positive integer \(n \) such that \(\tilde{z} + \delta \in \tilde{f}^n(\tilde{U}) \). Set \(\tilde{y} = \max\{\tilde{y} \in \tilde{U} | \tilde{f}^n(\tilde{y}) = \tilde{z} + \delta\} \).
If $\delta = 1$, we see that $\tilde{f}^n(\tilde{V})$ is an L-neighborhood of $\tilde{z} + 1$ for each small R-neighborhood \tilde{V} of \tilde{y}. It follows from Lemma 3.5 that $y = \pi(\tilde{y})$ is a nonwandering homoclinic point.

Next we suppose that $\delta = -1$ and $\tilde{z} + 1 \not\in W(\tilde{z}, \tilde{f}, L)$. Since $(-\infty, \tilde{z} - 1) \subset W(\tilde{z}, \tilde{f}, L)$, there exist a point $\tilde{x} \in (\tilde{z} - 1, \tilde{z})$ and a positive integer m such that $\tilde{f}^m(\tilde{x}) < \tilde{z} - 1$. Thus, we have $\tilde{y}' = \min(\tilde{x}, \tilde{z}) \cap \tilde{f}^{-m}(\tilde{z} - 1)$. By the definition of \tilde{y}', we see that $\tilde{f}^m(\tilde{V}')$ is an L-neighborhood of $\tilde{z} - 1$ for each small L-neighborhood \tilde{V}' of \tilde{y}'. It follows from Lemma 3.5 that $y' = \pi(\tilde{y}')$ is a nonwandering homoclinic point.

We can prove $S = R$ by an argument similar to that for $S = L$. Thus, we may assume that $W(\tilde{z}, \tilde{f}, S)$ contains no S-neighborhood of \tilde{z}.

Without loss of generality, we may assume that $S = L$. We see from Lemma 3.1(2) that $W(\tilde{z}, \tilde{f}, R) = W(\tilde{z}, \tilde{f}, L) = [\tilde{z}, \infty)$. Let \tilde{U} be a small connected R-neighborhood of \tilde{z}. Since $\tilde{z} + 1 \in W(\tilde{z}, \tilde{f}, R)$, there exists a positive integer n such that $\tilde{z} + 1 \in \tilde{f}^n(\tilde{U})$. Set $\tilde{y} = \min\{\tilde{y}' \in \tilde{U} | \tilde{f}^n(\tilde{y}') = \tilde{z} + 1\}$. As above, we can show that $y = \pi(\tilde{y})$ is a nonwandering homoclinic point. \hfill \qed

Theorem 4.2. Condition (d) in Theorem 1.2 implies condition (a) in Theorem 1.2.

Proof. Let f be a continuous map from the circle S^1 to itself. Let $c \in S^1$ such that $\omega(c, f)$ properly contains a periodic point of period n. By [BC, Lemma IV 4, p.72], $\omega(c, f)$ is infinite, thus, $\omega(f^n(c), f^n)$ is also infinite for all j with $0 \leq j < n$ by [BC, p.70]. Since at least one of these ω-limit sets contains a fixed point of f^n by [BC, p.70], we see from Lemma 4.1 that f^n has positive topological entropy. We conclude from [BC] Proposition VIII 2, p.191 that f has positive topological entropy. \hfill \qed

References

Institute of Mathematics, University of Tsukuba, Ibaraki 305-8571, Japan

E-mail address: naochin@math.tsukuba.ac.jp

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use