On a subspace perturbation problem
Authors:
Vadim Kostrykin, Konstantin A. Makarov and Alexander K. Motovilov
Journal:
Proc. Amer. Math. Soc. 131 (2003), 34693476
MSC (2000):
Primary 47A55, 47A15; Secondary 47B15
Published electronically:
February 14, 2003
MathSciNet review:
1991758
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: We discuss the problem of perturbation of spectral subspaces for linear selfadjoint operators on a separable Hilbert space. Let and be bounded selfadjoint operators. Assume that the spectrum of consists of two disjoint parts and such that . We show that the norm of the difference of the spectral projections
for and is less than one whenever either (i) or (ii) and certain assumptions on the mutual disposition of the sets and are satisfied.
 1.
Vadim
M. Adamjan and Heinz
Langer, Spectral properties of a class of rational operator valued
functions, J. Operator Theory 33 (1995), no. 2,
259–277. MR 1354980
(96i:47023)
 2.
N.
I. Akhiezer and I.
M. Glazman, Theory of linear operators in Hilbert space, Dover
Publications, Inc., New York, 1993. Translated from the Russian and with a
preface by Merlynd Nestell; Reprint of the 1961 and 1963 translations; Two
volumes bound as one. MR 1255973
(94i:47001)
 3.
J.
Avron, R.
Seiler, and B.
Simon, The index of a pair of projections, J. Funct. Anal.
120 (1994), no. 1, 220–237. MR 1262254
(95b:47012), http://dx.doi.org/10.1006/jfan.1994.1031
 4.
Rajendra
Bhatia, Chandler
Davis, and Alan
McIntosh, Perturbation of spectral subspaces and solution of linear
operator equations, Linear Algebra Appl. 52/53
(1983), 45–67. MR 709344
(85a:47020), http://dx.doi.org/10.1016/00243795(83)80007X
 5.
Rajendra
Bhatia, Chandler
Davis, and Paul
Koosis, An extremal problem in Fourier analysis with applications
to operator theory, J. Funct. Anal. 82 (1989),
no. 1, 138–150. MR 976316
(91a:42006), http://dx.doi.org/10.1016/00221236(89)900955
 6.
Chandler
Davis, Separation of two linear subspaces, Acta Sci. Math.
Szeged 19 (1958), 172–187. MR 0098980
(20 #5425)
 7.
Chandler
Davis, The rotation of eigenvectors by a perturbation, J.
Math. Anal. Appl. 6 (1963), 159–173. MR 0149309
(26 #6799)
Chandler
Davis, The rotation of eigenvectors by a perturbation. II, J.
Math. Anal. Appl. 11 (1965), 20–27. MR 0180852
(31 #5082)
 8.
Chandler
Davis and W.
M. Kahan, The rotation of eigenvectors by a perturbation. III,
SIAM J. Numer. Anal. 7 (1970), 1–46. MR 0264450
(41 #9044)
 9.
R.
McEachin, Closing the gap in a subspace perturbation bound,
Linear Algebra Appl. 180 (1993), 7–15. MR 1206407
(94c:47017), http://dx.doi.org/10.1016/00243795(93)90522P
 10.
Tosio
Kato, Perturbation theory for linear operators, Die
Grundlehren der mathematischen Wissenschaften, Band 132, SpringerVerlag
New York, Inc., New York, 1966. MR 0203473
(34 #3324)
 1.
 V. Adamyan and H. Langer, Spectral properties of a class of rational operator valued functions, J. Operator Theory 33 (1995), 259  277. MR 96i:47023
 2.
 N. I. Akhiezer and I. M. Glazman, Theory of Linear Operators in Hilbert Space, Dover Publications, New York, 1993. MR 94i:47001
 3.
 J. Avron, R. Seiler, and B. Simon, The index of a pair of projections, J. Funct. Anal. 120 (1994), 220  237. MR 95b:47012
 4.
 R. Bhatia, C. Davis, and A. McIntosh, Perturbation of spectral subspaces and solution of linear operator equations, Linear Algebra Appl. 52/53 (1983), 45  67. MR 85a:47020
 5.
 R. Bhatia, C. Davis, and P. Koosis, An extremal problem in Fourier analysis with applications to operator theory, J. Funct. Anal. 82 (1989), 138  150. MR 91a:42006
 6.
 C. Davis, Separation of two linear subspaces, Acta Scient. Math. (Szeged) 19 (1958), 172  187. MR 20:5425
 7.
 C. Davis, The rotation of eigenvectors by a perturbation. I and II, J. Math. Anal. Appl. 6 (1963), 159  173; 11 (1965), 20  27. MR 26:6799; MR 31:5082
 8.
 C. Davis and W. M. Kahan, The rotation of eigenvectors by a perturbation. III, SIAM J. Numer. Anal. 7 (1970), 1  46. MR 41:9044
 9.
 R. McEachin, Closing the gap in a subspace perturbation bound, Linear Algebra Appl. 180 (1993), 7  15. MR 94c:47017
 10.
 T. Kato, Perturbation Theory for Linear Operators, SpringerVerlag, Berlin, 1966. MR 34:3324
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC (2000):
47A55,
47A15,
47B15
Retrieve articles in all journals
with MSC (2000):
47A55,
47A15,
47B15
Additional Information
Vadim Kostrykin
Affiliation:
FraunhoferInstitut für Lasertechnik, Steinbachstraße 15, D52074, Aachen, Germany
Email:
kostrykin@ilt.fhg.de, kostrykin@tonline.de
Konstantin A. Makarov
Affiliation:
Department of Mathematics, University of Missouri, Columbia, Missouri 65211
Email:
makarov@math.missouri.edu
Alexander K. Motovilov
Affiliation:
Joint Institute for Nuclear Research, 141980 Dubna, Moscow Region, Russia
Address at time of publication:
Department of Mathematics, University of Missouri, Columbia, Missouri 65211
Email:
motovilv@thsun1.jinr.ru
DOI:
http://dx.doi.org/10.1090/S000299390306917X
PII:
S 00029939(03)06917X
Keywords:
Perturbation theory,
spectral subspaces
Received by editor(s):
March 29, 2002
Received by editor(s) in revised form:
May 30, 2002
Published electronically:
February 14, 2003
Communicated by:
Joseph A. Ball
Article copyright:
© Copyright 2003
by the authors
