The spectrum of Schrödinger operators with positive potentials in Riemannian manifolds

Author:
Zhongwei Shen

Journal:
Proc. Amer. Math. Soc. **131** (2003), 3447-3456

MSC (2000):
Primary 35P20, 35J10

Published electronically:
February 20, 2003

MathSciNet review:
1990634

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let be a noncompact complete Riemannian manifold. We consider the Schrödinger operator acting on , where is a nonnegative, locally integrable function on . We obtain some simple conditions which imply that , the bottom of the spectrum of , is strictly positive. We also establish upper and lower bounds for the counting function .

**[A-B]**Wolfgang Arendt and Charles J. K. Batty,*Exponential stability of a diffusion equation with absorption*, Differential Integral Equations**6**(1993), no. 5, 1009–1024. MR**1230476****[Bu]**Peter Buser,*A note on the isoperimetric constant*, Ann. Sci. École Norm. Sup. (4)**15**(1982), no. 2, 213–230. MR**683635****[C-G-T]**Jeff Cheeger, Mikhail Gromov, and Michael Taylor,*Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds*, J. Differential Geom.**17**(1982), no. 1, 15–53. MR**658471****[Da]**E. B. Davies,*Heat kernels and spectral theory*, Cambridge Tracts in Mathematics, vol. 92, Cambridge University Press, Cambridge, 1990. MR**1103113****[Fe]**Charles L. Fefferman,*The uncertainty principle*, Bull. Amer. Math. Soc. (N.S.)**9**(1983), no. 2, 129–206. MR**707957**, 10.1090/S0273-0979-1983-15154-6**[K-S]**Vladimir Kondrat′ev and Mikhail Shubin,*Discreteness of spectrum for the Schrödinger operators on manifolds of bounded geometry*, The Maz′ya anniversary collection, Vol. 2 (Rostock, 1998) Oper. Theory Adv. Appl., vol. 110, Birkhäuser, Basel, 1999, pp. 185–226. MR**1747895****[Le-So]**Daniel Levin and Michael Solomyak,*The Rozenblum-Lieb-Cwikel inequality for Markov generators*, J. Anal. Math.**71**(1997), 173–193. MR**1454250**, 10.1007/BF02788029**[Li-Ya]**Peter Li and Shing Tung Yau,*On the Schrödinger equation and the eigenvalue problem*, Comm. Math. Phys.**88**(1983), no. 3, 309–318. MR**701919****[Ma]**G. O. Okikiolu,*Semigroups of functions with generators defined in terms of multiplier transforms*, Bull. Math.**15**(1984), 1–44. MR**775201****[Ou]**El Maati Ouhabaz,*The spectral bound and principal eigenvalues of Schrödinger operators on Riemannian manifolds*, Duke Math. J.**110**(2001), no. 1, 1–35. MR**1861087**, 10.1215/S0012-7094-01-11011-9**[Re-Si]**Michael Reed and Barry Simon,*Methods of modern mathematical physics. II. Fourier analysis, self-adjointness*, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1975. MR**0493420****[Sh1]**Zhong Wei Shen,*𝐿^{𝑝} estimates for Schrödinger operators with certain potentials*, Ann. Inst. Fourier (Grenoble)**45**(1995), no. 2, 513–546 (English, with English and French summaries). MR**1343560****[Sh2]**-,*On the eigenvalue asymptotics of Schrödinger operators*, unpublished (1995).**[Sh3]**Zhongwei Shen,*Eigenvalue asymptotics and exponential decay of eigenfunctions for Schrödinger operators with magnetic fields*, Trans. Amer. Math. Soc.**348**(1996), no. 11, 4465–4488. MR**1370650**, 10.1090/S0002-9947-96-01709-6**[Sh4]**Zhongwei Shen,*On bounds of 𝑁(𝜆) for a magnetic Schrödinger operator*, Duke Math. J.**94**(1998), no. 3, 479–507. MR**1639527**, 10.1215/S0012-7094-98-09420-0

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
35P20,
35J10

Retrieve articles in all journals with MSC (2000): 35P20, 35J10

Additional Information

**Zhongwei Shen**

Affiliation:
Department of Mathematics, University of Kentucky, Lexington, Kentucky 40506

Email:
shenz@ms.uky.edu

DOI:
http://dx.doi.org/10.1090/S0002-9939-03-06968-5

Received by editor(s):
May 27, 2002

Published electronically:
February 20, 2003

Communicated by:
Andreas Seeger

Article copyright:
© Copyright 2003
American Mathematical Society