Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Cotilting modules are pure-injective


Author: S. Bazzoni
Journal: Proc. Amer. Math. Soc. 131 (2003), 3665-3672
MSC (1991): Primary 16D90, 16D30
DOI: https://doi.org/10.1090/S0002-9939-03-06938-7
Published electronically: February 28, 2003
MathSciNet review: 1998172
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that a cotilting module over an arbitrary ring is pure-injective.


References [Enhancements On Off] (What's this?)

  • 1. L. Angeleri Hügel, A. Tonolo, J. Trlifaj, Tilting preenvelopes and cotilting precovers, Algebr. Represent. Theory 4 (2001), 155-170. MR 2002e:16010
  • 2. M. Auslander, I. Reiten, Applications of contravariantly finite subcategories, Adv. Math. 86 (1991), 111-152. MR 92e:16009
  • 3. M. Auslander, S. Smalø, Preprojective modules over Artin algebras, J. Algebra 66 (1980), 61-122. MR 83a:16039
  • 4. L. Bican, R. El Bashir and E. Enochs, All modules have flat covers, Bull. London Math. Soc. 33, no. 4 (2001), 385-390. MR 2002e:16002
  • 5. S. Brenner, M. Butler, Generalizations of the Bernstein-Gelfand-Ponomarev reflection functors, in Proc. ICRA III LNM 832, Springer (1980), 103-169. MR 83e:16031
  • 6. A. B. Buan, H. Krause, Ø. Solberg, On the lattice of cotilting modules, AMA Algebra Montp. Announc., 1 (2002), 6pp.
  • 7. R. R. Colby, K. R. Fuller, Tilting, cotilting and serially tilted rings, Comm. Algebra 18(5) (1990), 1585-1615. MR 91h:16011
  • 8. R. Colpi, Tilting modules and *-modules, Comm. Algebra 21 (1993), 1095-1102. MR 94d:16009
  • 9. R. Colpi, A. Tonolo, J. Trlifaj, Partial cotilting modules and the lattices induced by them, Comm. Algebra 25(10) (1997), 3225-3237. MR 98i:16003
  • 10. R. Colpi, J. Trlifaj, Tilting modules and tilting torsion theories, J. Algebra 178 (1995), 492-510. MR 97e:16003
  • 11. W. W. Crawley-Boevey, Infinite-dimensional modules in the representation theory of finite-dimensional algebras, Algebras and modules, I (Trondheim, 1996), 29-54. MR 99m:16016
  • 12. P. C. Eklof and J. Trlifaj, How to make Ext vanish, Bull. London Math. Soc. 33 (2001), 41-51. MR 2001i:16015
  • 13. P. C. Eklof, J. Trlifaj, Covers induced by Ext, J. Algebra 231 (2000), 640-651. MR 2001f:16021
  • 14. E. Enochs, Injective and flat covers, envelopes and resolvents, Israel J. Math. 39 (1981), 33-38. MR 83a:16031
  • 15. R. Göbel, S. Shelah, Almost free splitters, Colloq. Math. 81 (1999), no. 2, 193-221. MR 2000m:20092
  • 16. R. Göbel, S. Shelah, Cotorsion theories and splitters, Trans. Amer. Math.Soc. 352 (2000), no. 11, 5357-5379. MR 2001b:20098
  • 17. P. Griffith, On a subfunctor of Ext, Arch. Math. XXI (1970), 17-22. MR 41:6964
  • 18. C. U. Jensen, H. Lenzing, Model Theoretic Algebra, Gordon and Breach S. Publishers, (1989). MR 91m:03038
  • 19. D. Happel, C. Ringel, Tilted algebras, Trans. Amer. Math. Soc. 274 (1982), 399-443. MR 84d:16027
  • 20. R. H. Hunter, Balanced subgroups of abelian groups, Trans. Amer. Math. Soc. 215 (1976), 81-98. MR 58:22337
  • 21. H. Krause, Ø. Solberg, Filtering modules of finite projective dimension, to appear in Forum Math.
  • 22. F. Mantese, P. Ruzicka, A. Tonolo, Cotilting versus pure-injective modules, to appear in Pacific J. Math.
  • 23. Y. Miyashita, Tilting modules of finite projective dimension, Math. Z. 193 (1986), 113-146. MR 87m:16055
  • 24. L. Salce, Cotorsion theories for abelian groups, Symposia Math., XXIII (1979), 11-32. MR 81j:20078
  • 25. B. Stenström, Rings of quotients, GTM, 131, Springer-Verlag, New York (1975). MR 52:10782
  • 26. J. Xu, Flat covers of modules, Lecture Notes in Mathematics No. 1634, Springer-Verlag, New York (1996). MR 98b:16003

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 16D90, 16D30

Retrieve articles in all journals with MSC (1991): 16D90, 16D30


Additional Information

S. Bazzoni
Affiliation: Dipartimento di Matematica Pura e Applicata, Università di Padova, Via Belzoni 7, 35131 Padova, Italy
Email: bazzoni@math.unipd.it

DOI: https://doi.org/10.1090/S0002-9939-03-06938-7
Keywords: Cotilting modules, pure-injective modules, cotorsion theories
Received by editor(s): May 31, 2002
Received by editor(s) in revised form: July 10, 2002
Published electronically: February 28, 2003
Additional Notes: This research was supported by MURST
Communicated by: Martin Lorenz
Article copyright: © Copyright 2003 American Mathematical Society

American Mathematical Society