Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Zeroes of complete polynomial vector fields

Author: Alvaro Bustinduy
Journal: Proc. Amer. Math. Soc. 131 (2003), 3767-3775
MSC (2000): Primary 34M45; Secondary 32S65, 14H37
Published electronically: February 26, 2003
MathSciNet review: 1998184
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that a complete polynomial vector field on $\mathbb{C} ^{2}$ has at most one zero, and analyze the possible cases of those with exactly one which is not of Poincaré-Dulac type. We also obtain the possible nonzero first jet singularities of the foliation $\mathcal{F}_X$ at infinity and the nongenericity of completeness. Connections with the Jacobian Conjecture are established.

References [Enhancements On Off] (What's this?)

  • 1. Patrick Ahern and Jean-Pierre Rosay, On Rebelo’s theorem on singularities of holomorphic flows, Ark. Mat. 37 (1999), no. 2, 211–220. MR 1714772, 10.1007/BF02412211
  • 2. Erik Andersén, Complete vector fields on (𝐶*)ⁿ, Proc. Amer. Math. Soc. 128 (2000), no. 4, 1079–1085. MR 1641696, 10.1090/S0002-9939-99-05123-0
  • 3. V. Arnol′d, Chapitres supplémentaires de la théorie des équations différentielles ordinaires, “Mir”, Moscow, 1980 (French). Translated from the Russian by Djilali Embarek. MR 626685
  • 4. Marco Brunella, Sur les courbes intégrales propres des champs de vecteurs polynomiaux, Topology 37 (1998), no. 6, 1229–1246 (French). MR 1632932, 10.1016/S0040-9383(97)00088-8
  • 5. Gregery T. Buzzard and John Erik Fornæss, Complete holomorphic vector fields and time-1 maps, Indiana Univ. Math. J. 44 (1995), no. 4, 1175–1182. MR 1386765
  • 6. César Camacho and Paulo Sad, Invariant varieties through singularities of holomorphic vector fields, Ann. of Math. (2) 115 (1982), no. 3, 579–595. MR 657239, 10.2307/2007013
  • 7. D. Cerveau and B. Scardua.
    Complete polynomial vector fields in two complex variables.
    Preprint (1999).
  • 8. John Erik Fornaess and Sandrine Grellier, Exploding orbits of Hamiltonian and contact structures, Complex analysis and geometry (Trento, 1993) Lecture Notes in Pure and Appl. Math., vol. 173, Dekker, New York, 1996, pp. 155–171. MR 1365973
  • 9. X. Gómez-Mont and L. Ortíz-Bobadilla, Sistemas dinámicos holomorfos en superficies, Aportaciones Matemáticas: Notas de Investigación [Mathematical Contributions: Research Notes], vol. 3, Sociedad Matemática Mexicana, México, 1989 (Spanish). MR 1304495
  • 10. Jorge L. López and Jesús Muciño-Raymundo, On the problem of deciding whether a holomorphic vector field is complete, Complex analysis and related topics (Cuernavaca, 1996) Oper. Theory Adv. Appl., vol. 114, Birkhäuser, Basel, 2000, pp. 171–195. MR 1748568
  • 11. J.-F. Mattei and R. Moussu, Holonomie et intégrales premières, Ann. Sci. École Norm. Sup. (4) 13 (1980), no. 4, 469–523 (French). MR 608290
  • 12. Gary H. Meisters and Czesław Olech, A poly-flow formulation of the Jacobian conjecture, Bull. Polish Acad. Sci. Math. 35 (1987), no. 11-12, 725–731 (English, with Russian summary). MR 961711
  • 13. Julio C. Rebelo, Singularités des flots holomorphes, Ann. Inst. Fourier (Grenoble) 46 (1996), no. 2, 411–428 (French, with English and French summaries). MR 1393520
  • 14. Julio C. Rebelo, Réalisation de germes de feuilletages holomorphes par des champs semi-complets en dimension 2, Ann. Fac. Sci. Toulouse Math. (6) 9 (2000), no. 4, 735–763 (French, with English and French summaries). MR 1838147
  • 15. Jean-Pierre Rosay, Automorphisms of 𝐶ⁿ, a survey of Andersén-Lempert theory and applications, Complex geometric analysis in Pohang (1997), Contemp. Math., vol. 222, Amer. Math. Soc., Providence, RI, 1999, pp. 131–145. MR 1653046, 10.1090/conm/222/03167
  • 16. Masakazu Suzuki, Propriétés topologiques des polynômes de deux variables complexes, et automorphismes algébriques de l’espace 𝐶², J. Math. Soc. Japan 26 (1974), 241–257 (French). MR 0338423
  • 17. Masakazu Suzuki, Sur les opérations holomorphes du groupe additif complexe sur l’espace de deux variables complexes, Ann. Sci. École Norm. Sup. (4) 10 (1977), no. 4, 517–546 (French). MR 0590938
  • 18. Masakazu Suzuki, Sur les intégrales premières de certains feuilletages analytiques complexes, Fonctions de plusieurs variables complexes, III (Sém. François Norguet, 1975–1977) Lecture Notes in Math., vol. 670, Springer, Berlin, 1978, pp. 53–79, 394 (French). MR 521913
  • 19. Masakazu Suzuki, Sur les opérations holomorphes de 𝐶 et de 𝐶* sur un espace de Stein, Fonctions de plusieurs variables complexes, III (Sém. François Norguet, 1975–1977) Lecture Notes in Math., vol. 670, Springer, Berlin, 1978, pp. 80–88, 394 (French). MR 521914
  • 20. Arno van den Essen, Polynomial automorphisms and the Jacobian conjecture, Algèbre non commutative, groupes quantiques et invariants (Reims, 1995), Sémin. Congr., vol. 2, Soc. Math. France, Paris, 1997, pp. 55–81 (English, with English and French summaries). MR 1601194
  • 21. M. G. Zaĭdenberg and V. Ya. Lin, An irreducible, simply connected algebraic curve in 𝐶² is equivalent to a quasihomogeneous curve, Dokl. Akad. Nauk SSSR 271 (1983), no. 5, 1048–1052 (Russian). MR 722017

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 34M45, 32S65, 14H37

Retrieve articles in all journals with MSC (2000): 34M45, 32S65, 14H37

Additional Information

Alvaro Bustinduy
Affiliation: Departamento de Álgebra, Facultad de Matemáticas, Universidad Complutense de Madrid, Ciudad Universitaria 28040 Madrid, Spain

Keywords: Complete vector field, complex orbit, holomorphic foliation
Received by editor(s): January 30, 2002
Received by editor(s) in revised form: April 15, 2002, and July 1, 2002
Published electronically: February 26, 2003
Additional Notes: This paper was partially supported by a grant from Universidad Complutense de Madrid, European project TMR “Singularidades de ecuaciones diferenciales y foliaciones" and CONACYT 28492-E
Dedicated: Dedicated to my father
Communicated by: Carmen C. Chicone
Article copyright: © Copyright 2003 American Mathematical Society