ZEROES OF COMPLETE POLYNOMIAL VECTOR FIELDS

ALVARO BUSTINDUY

(Communicated by Carmen C. Chicone)

Dedicated to my father

Abstract. We prove that a complete polynomial vector field on \(\mathbb{C}^2 \) has at most one zero, and analyze the possible cases of those with exactly one which is not of Poincaré-Dulac type. We also obtain the possible nonzero first jet singularities of the foliation \(\mathcal{F}_X \) at infinity and the nongenericity of completeness. Connections with the Jacobian Conjecture are established.

Introduction and results

Let \(X = P(z_1, z_2)\frac{\partial}{\partial z_1} + Q(z_1, z_2)\frac{\partial}{\partial z_2} \) be a polynomial vector field on \(\mathbb{C}^2 \) of degree \(m = \max\{\deg P, \deg Q\} \geq 2 \) with isolated zeroes. It is known, [9], that \(X \) extends as a rational vector field in \(\mathbb{CP}^2 \) having a pole along the line at infinity, \(L_\infty \). Removing the pole, we obtain a foliation \(\mathcal{F}_X \) of degree \(d \), where \(d = m \) if \(L_\infty \) is invariant and \(d = m - 1 \) if it is not. We denote by \(\text{Sing}(\mathcal{F}_X) \) the singular set of \(\mathcal{F}_X \).

Recall that a holomorphic vector field \(X \) in a complex manifold \(M \) is said to be complete if, for every \(p \in M \), the differential equation defined by \(X \) can be solved for every complex time \(t \).

In this paper we study complete polynomial vector fields \(X \) on \(\mathbb{C}^2 \) through some properties of the leaves of \(\mathcal{F}_X \). In section 1, we analyze the trajectories of \(X \) at infinity and we give in Theorem 1.1 the possible nonzero first jet of \(\mathcal{F}_X \) at its singular points in \(L_\infty \), thus proving Corollary 1.1 foliations induced by complete polynomial vector fields of degree \(m \) give a nowhere dense set in the space of degree \(m \) foliations, \(\mathcal{F}(m, 2) \), providing a polynomial version of Buzzard-Fornaess’s result, [5]. We also apply our results to the problem of exploding orbits of complex polynomial Hamiltonians, obtaining a simple geometric proof of Fornaess and Grellier’s result, [8], in that case.

In section 2, we further study the isolated zeroes of \(X \). A natural question (posed in [1] and [15]) is if there exist complete holomorphic vector fields on \(\mathbb{C}^2 \) with more than one isolated zero. The answer, given in Theorem 2.1 is no for polynomial ones. Our result relies on the study of proper orbits due to Brunella in [4]. We also classify the complete polynomial vector fields with rational first integral and, using
Andersen’s result in [2], those with one zero p which is not of Poincaré-Dulac type, when it is nondicritical and at least two of the separatrices through it are algebraic at infinity. When p is dicritical with no rational first integral, or nondicritical with just one separatrix algebraic at infinity, the induced foliation \mathcal{F}_X is, as in Brunella’s result [4], P-complete where P can be written in a simple form due to [17] and [16] (Proposition 2.1 and Theorem 2.2).

In section 3, we state the Jacobian Conjecture in terms of completeness of certain vector fields, and characterize the complete commutative bases of \mathbb{C}-derivations of the polynomial ring.

I want to thank Luis Giraldo and Jesús Muñoz-Raymundo for helpful conversations, advise and encouragement.

1. Separatrices at infinity and completeness

A germ Σ of an analytic irreducible curve is said to be a trajectory of X at $p \in L_\infty$ if $p \in \Sigma$ and $\Sigma \setminus \{p\}$ is invariant by X. In this case one can extend $\Sigma \setminus \{p\}$ by analytic continuation to obtain the complex orbit L of X. If $\gamma : \mathbb{D} \to \Sigma$ is the (minimal) Puiseaux’s parametrization of a neighborhood U_p of p in Σ, $\mathcal{L} = L \cup \{p\}$ can be endowed with an abstract Riemann surface structure as follows: for any $q \in L$, by the existence of local solutions for X, we can take the parametrization γ_q of an open neighborhood $U_q \subset L$, and define the local chart as $z_q = \gamma_q^{-1} : U_q \to \mathbb{C}$. Otherwise, γ defines the local chart around p in \mathcal{L} as $\gamma^{-1} : \Sigma \to \mathbb{D}$.

Lemma 1.1. Let X be a polynomial vector field in \mathbb{C}^2, and let Σ be a trajectory of X at $p \in L_\infty$. Then, if X is complete on $\mathcal{L} \setminus \{p\}$, it extends to p as a zero of order 1 or 2.

Proof. As $\mathcal{L} \setminus \{p\}$ is uniformized by \mathbb{C}, and it is contained in the Stein manifold \mathbb{C}^2, then $\mathcal{L} \setminus \{p\}$ is (analytically) isomorphic to \mathbb{C} or \mathbb{C}^*. If $\mathcal{L} \setminus \{p\} \simeq \mathbb{C}$, it follows that $\mathcal{L} \simeq \mathbb{CP}^1$ and X extends to p as zero of order 2, by Riemann-Roch. On the other hand, if $\mathcal{L} \setminus \{p\} \simeq \mathbb{C}^*$, then X extends to p as zero of order 1. We refer to [10] for the study of complete vector fields on Riemann surfaces.

Corollary 1.1. If X is a complete polynomial vector field on \mathbb{C}^2, then L_∞ is invariant by \mathcal{F}_X.

Remark 1.1. If $\mathcal{L} \setminus \{p\} \simeq \mathbb{C}$, by Chow’s Theorem $\mathcal{L} \setminus \{p\}$ is contained in a rational curve.

Remark 1.2. Lemma 1.1 is valid for polynomial vector fields on \mathbb{C}^n, $n \geq 2$.

Let $p \in \text{Sing}(\mathcal{F}_X) \cap L_\infty$, and let $\Sigma \neq L_\infty$ be a separatrix of \mathcal{F}_X through p, parametrized by $\gamma : \mathbb{D} \to \Sigma$. Without loss of generality assume that $p = (0 : 1 : 0)$. Then if $\gamma(t) = (y_1(t), y_2(t))$, with $(y_1, y_2) = (\varphi_1 \circ \varphi_0^{-1})(z_1, z_2) = (\frac{1}{z_1}, \frac{z_2}{z_1})$ the usual change of charts in \mathbb{CP}^2, we denote by σ the order of $y_1(t)$ at $t = 0$, which is the order of contact of Σ with L_∞ at p. Since $\Sigma \setminus \{p\}$ is invariant by \mathcal{F}_X, γ^*X is a holomorphic vector field on \mathbb{D}^* whose order at 0 is called the multiplicity of \mathcal{F}_X with respect to Σ. We will denote it by $\text{ind}_p(\mathcal{F}_X, \Sigma)$. From now on, if no other conditions are explicitly given, X will be a complete polynomial vector field on \mathbb{C}^2 of degree $m \geq 2$ with isolated zeroes.

Lemma 1.2. $\text{ind}_p(\mathcal{F}_X, \Sigma) - \sigma(m - 1) = 1$ or 2.
Proof. We obtain the extension of $X_{|\mathcal{L}\backslash \{p\}}$ to p as $\gamma^*(\varphi_1 \circ \varphi_0^{-1})_*, X = f(t)\frac{\partial}{\partial t}$. Thus $(y_1(t))^{m-1} f(t)$ equals

\[-\sum_{i=0}^{m} \frac{(y_1(t))^{m+1-i}}{y'_1(t)} \cdot P_i(1, y_2(t)), \quad \text{or} \quad \sum_{i=0}^{m} \frac{(y_1(t))^{m-i}}{y'_2(t)} \cdot G_i(1, y_2(t)), \]

where P_i and Q_i denote the homogeneous components of degree i of P and Q respectively, and $G_i(y_2) = Q_i(1, y_2) - y_2 P_i(1, y_2)$. As L_∞ is invariant by Corollary 1.1, $y_1^{m-1}(\varphi_1 \circ \varphi_0^{-1})_*, X$ represents \mathcal{F}_X in U_1. Thus $ord_0 f(t) = ind_p(\mathcal{F}_X, \Sigma) - \sigma(m-1)$, and the result follows from Lemma 1.1.

\[\square \]

1.1. Foliations with nonzero first jet singularities at infinity. We say that \mathcal{F}_X has nonzero first jet at a singularity p if the linear part at p of a vector field Y which represents \mathcal{F}_X in a neighbourhood of p is not zero. Let λ and μ be the eigenvalues of DY_p and suppose that λ and μ are not both zero. Then, we say that p is a saddle-node point if $\lambda \mu = 0$. If $\lambda / \mu \in \mathbb{Q}^+$, the singularity is either dicritical or of Poincaré-Dulac type: after a local analytic change of coordinates Y is given by $x\frac{\partial}{\partial x} + (ny + x^n)\frac{\partial}{\partial y}$, with $n \in \mathbb{N}^+$. We will suppose that $p = (0, \alpha) \in Sing(\mathcal{F}_X) \cap L_\infty$. Let us rewrite the Jacobian $D(y_1^{m-1}(\varphi_1 \circ \varphi_0^{-1})_*, X)_p$ as

\[(2) \quad J_p = \begin{pmatrix} -P_m(1, \alpha) & 0 \\ G_{m-1}(\alpha) & G'_m(\alpha) \end{pmatrix} = \begin{pmatrix} \lambda & 0 \\ \nu & \mu \end{pmatrix}. \]

Theorem 1.1. Let $p \in Sing(\mathcal{F}_X) \cap L_\infty$ be a point at which \mathcal{F}_X has nonzero first jet. Let us suppose that λ and μ are not both zero. Then,

(i) either p is a saddle-node point and L_∞ defines the strong direction, that is, $\lambda = 0, \mu \neq 0$;

(ii) or p is of Poincaré-Dulac type.

Proof. We study the following cases:

1) If $det J_p = 0$, then $\lambda = 0$. To see this, we use Corollary 1.1, and observe that if $\lambda \neq 0$, L_∞ is a smooth separatix tangent to the weak direction $\mu = 0$ and there is just one more smooth separatix Σ, tangent to the strong direction. Σ is transversal to L_∞ at p, so $ind_p(\mathcal{F}_X, \Sigma) = 1 < m$, contradicting Lemma 1.2. Then (i) holds, and there is at most one more separatix $\Sigma \neq L_\infty$, [11] pp. 521-522.

2) If $det J_p \neq 0$, then $\lambda / \mu \in \mathbb{Q}^+$, as otherwise there are exactly two transversal smooth separatrices through p [11] pp. 518-521, and we get a contradiction as before. Moreover, p is nondicritical. If not, take a separatix $\Sigma \neq L_\infty$, then $ind_p(\mathcal{F}_X, \Sigma) = 1 < 1 + \sigma(m-1)$, again a contradiction by Lemma 1.2. Thus p is of Poincaré-Dulac type, [3].

Remark 1.3. Note that if $\Sigma \neq L_\infty$ is a separatix through p, then p is a saddle-node point and L_∞ defines the strong direction. Example (2): $X = z_1 \frac{\partial}{\partial z_1} - z_2(1 + z_1) \frac{\partial}{\partial z_2}$, with $p = (0 : 1 : 0) \in L_\infty$.

Corollary 1.2. For each $m \geq 2$, the set of degree m foliations defined by complete polynomial vector fields is a nowhere dense set in $\mathcal{F}(m, 2)$.

Application: exploding orbits of polynomial Hamiltonians. Given $H \in \mathbb{C}[z_1, z_2]_m$, the space of polynomials of degree $\leq m$, we get a polynomial Hamiltonian, X_H. The (complex) orbit of a point $p \in \mathbb{C}^2$ is said to explode if it is unbounded on some $D^* \subset \mathbb{C}$.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Proposition 1.1. The existence of a dense set of points in \(\mathbb{C}^2 \) whose complex orbit explodes is a generic property in \(\mathbb{C}[z_1, z_2]_m \), \(m \geq 3 \).

Proof. Consider the Zariski open of \(\mathbb{C}[z_1, z_2]_m \) defined by \(W_m = \{ H \ | \ H_m = 0 \} \) defines \(m \) distinct points in \(\mathbb{C}P^1 \). For any \(H \in W_m \) and \(p = (0, \alpha) \in \text{Sing} \mathcal{F}_{X_H} \cap L_\infty \), as \(\partial H_m/\partial z_2(1, \alpha) \neq 0 \), \(\mathcal{L} \) is not 0. Since \(\mathcal{F}_{X_H} \) is given by the pencil defined by \(H \), and \(L_\infty \) is invariant, it can be taken to be dicritical. For each separatrix \(\Sigma \neq L_\infty \) through \(p \), \(X_{|C \setminus \{p\}} \) extends to \(p \) as a pole of order \(k \geq 1 \), Theorem 1.1.

Thus the norm of \(X \) is unbounded on \(\mathbb{D}_* \) and \(L \) explodes. \(\square \)

2. On the number of zeroes of a complete polynomial vector field

Proposition 2.1. Suppose that \(X \) has a rational first integral. Then, there exists a polynomial automorphism \(\varphi \in \text{Aut}[\mathbb{C}^2] \) such that

(i) If \(X \) is not singular, \(\varphi^*X = \frac{\partial}{\partial z_1} \);

(ii) If \(X \) is singular, \(\varphi^*X = m z_1^{l} + n z_2 \partial / \partial z_2 \) where \(m, n \in \mathbb{Z}^* \).

Proof. Let \(H = F/G \) be a rational first integral of \(X \). By Stein’s factorization, we may assume that the generic fiber of \(H \) is connected, i.e., \(H \) is a primitive rational first integral. Since \(X \) is complete there exists a subset \(E \subset \mathbb{C}^2 \) of zero transverse logarithmic capacity, which is invariant by the flow of \(X \), and such that the orbits of \(X \) on \(\mathbb{C}^2 \setminus E \) are all isomorphic either to \(\mathbb{C} \) or to \(\mathbb{C}^* \) (see [15], [19]). We say that the generic orbit of \(X \) is \(\mathbb{C} \) or \(\mathbb{C}^* \), and also that \(H \) is of type \(\mathbb{C} \) or \(\mathbb{C}^* \).

- Assume that the generic orbit of \(X \) is \(\mathbb{C} \). Suppose that \(\{ H = 0 \} \simeq \mathbb{C} \), so that according to Abhyankar-Moh-Suzuki’s Theorem [16], there exists \(\varphi \in \text{Aut}[\mathbb{C}^2] \) with \(H \circ \varphi(z_1, z_2) = z_2 \). Therefore \(\varphi^*X = \frac{\partial}{\partial z_1} \).

- If the generic orbit of \(X \) is \(\mathbb{C}^* \), following an improvement of a theorem of Saito [17], after a polynomial automorphism \(\Phi \), we have that \(H \circ \Phi(z_1, z_2) = h \circ Q(z_1, z_2) \), where \(h \) is a rational function of degree one and either \(Q = (z_1^m(z_1^2 + p(z_1))^n) \), \(m, n \in \mathbb{Z}^* \), \(l \in \mathbb{N}^+ \), \(p(z_1) \) is a polynomial of degree \(\leq l - 1 \) with \(p(0) \neq 0 \), or \(Q(z_1, z_2) = z_1^m z_2^n \). In the first case, removing the one-dimensional singular locus of \(dQ, i_{\Phi, X}(dz_1 \wedge dz_2) \) equals

\[
\frac{\lambda(z_1^2 + p(z_1))^{-2m} h(Q)}{z_1^{m-1}(z_1^2 + p(z_1))^{n-1}} \quad \text{where} \quad a = 0 \quad \text{if} \quad m > 0, \\
b = 0 \quad \text{if} \quad n > 0, \\
1 = 1 \quad \text{if} \quad n < 0,
\]

and \(\lambda \in \mathbb{C}^* \). Thus \(\Phi^*X \) equals

\[
A z_1^{l+1} \frac{\partial}{\partial z_1} + (B z_1^l z_2 + C p(z_1) + D z_1 p'(z_1)) \frac{\partial}{\partial z_2} \quad \text{where} \quad A \in \mathbb{C}^* \text{ and } B, C, D \in \mathbb{C}.
\]

Let us consider the trajectory \(L = \{ z_1^l z_2 + p(z_1) = 0 \} \), and let \(\Sigma \) be the branch of \(L \) at \((0 : 1 : 0) \), parametrized by \(\gamma(t) = (t, -\tilde{p}(1, t)) \), where \(\tilde{p}(x, z) \) is the homogenization of \(p \). Then, \(\text{ind}_{\tilde{p}}(\mathcal{F}_{\Phi, X}, \Sigma) = 1 < 1 + l \), and by Lemma 2.2 \(X_L \) is not complete.

If \(Q = z_1^m z_2^n \), taking \(\varphi = \frac{\partial}{\partial z_1} \Phi \), then \(\varphi^*X = m z_1 \frac{\partial}{\partial z_1} + n z_2 \frac{\partial}{\partial z_2}. \) \(\square \)

Proposition 2.2. Let \(p \) be a nondicritical zero of \(X \) (polynomial but not necessarily complete). If \(\Gamma \) is an irreducible algebraic invariant curve through \(p \) such that \(X_{|\Gamma \setminus \{p\}} \) is complete, then there exists \(\Phi \in \text{Aut}[\mathbb{C}^2] \) such that \(\Phi(\Gamma) \) is a line.
Proof. As $X_{\Gamma \setminus \{p\}}$ is complete and \mathbb{C}^2 is Stein, $\Gamma \setminus \{p\} \simeq \mathbb{C}^*$. Consider the unique branch of Γ at p and its parametrization $\gamma : \mathbb{D} \to \Gamma$. The extension of γ^*X to 0 has a zero of order 1. Then DX_p is not zero, and we denote by λ and μ its eigenvalues.

- If $\lambda = \mu = 0$, after a linear change of coordinates

$$DX_p = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}.$$

Suppose that Γ is singular at p. There exists $\psi \in Aut(\mathbb{C}^2)$ such that $\psi(\Gamma) = \{z_1^k - a z_2 = 0, (k,l) = 1, a \in \mathbb{C}^*\}$. Then $\gamma(t) = (z^l, t^k)$, with $\varepsilon^k = a$, and $D(\psi, X)_p = D\psi_p \cdot DX_p \cdot D\psi_p^{-1}$, so we have that $\gamma^*(\psi, X) = \Delta(t)\frac{dz}{dt}$, where $\Delta(t)$ equals

$$ab d \varepsilon^l - b t^k + P(\varepsilon^l, t^k) \varepsilon^{l-1} \frac{dt}{\varepsilon t^k} = \frac{ab d \varepsilon^l - b t^k + Q(\varepsilon^l, t^k) \frac{dt}{\varepsilon t^k}}{kt^{l-1}},$$

where $a, b, c, d \in \mathbb{C}$, $a = (ad - bc)^{-1}$ is \mathbb{C}^*, and $P, Q \in \mathbb{C}[z_1, z_2]$ have order ≥ 2 at p. If $bd \neq 0$ (the case $bd = 0$ is similar), as $\gamma^*(\psi, X)$ has a zero of order 1, the orders of the numerators in (3) are l and k, respectively. It should be $k > l$; otherwise, the term $-a b t^k$ is cancelled with one of the terms of $P(\varepsilon^l, t^k)$, and thus $k = j l$ with $j \geq 2$. But $k > l$ implies that $b d^2 \varepsilon^l$ is cancelled with one of the terms of $Q(\varepsilon^l, t^k)$, and hence $l = j k$ with $j \geq 2$, a contradiction.

- If $\lambda \mu \in \mathbb{Q}^+$, as p is nondicritical, p is of Poincaré-Dulac type [3], and hence Γ is smooth at p.

- If $\lambda / \mu \notin \mathbb{Q}^+$, or $\lambda \neq 0$ and $\mu = 0$, according to [11] pp. 518–522 Γ is smooth at p.

By [10], there exists $\Phi \in Aut(\mathbb{C}^2)$ such that $\Phi(\Gamma)$ is a line.

Let Σ be a separatrix through a zero p of X. Consider the orbit L defined extending $\Sigma \setminus \{p\}$. As \mathbb{C}^2 is Stein, $L \simeq \mathbb{C}^*$. Thus L has two planar isolated ends; one defined by $\Sigma \setminus \{p\}$ and the other by $L \setminus \Sigma$. If the end defined by $L \setminus \Sigma$ is algebraic (transcendental), one says that Σ is algebraic (transcendental) at infinity (see definitions in [4]).

Proposition 2.3. Either L is defined by the (unique) local branch at p of an algebraic curve $\Gamma \subset \mathbb{C}^2$, such that $\Gamma \setminus \{p\} \simeq L$, or $L \setminus \Sigma$ defines a planar isolated end which is properly imbedded and transcendental.

Proof. Take $x \in L$ and let $j : \mathbb{C} \to \mathbb{C}^2$ be the map $j(t) = \varphi(t, x)$, where φ is the flow of X. We know that its analytic closure $\overline{L} \subset \mathbb{C}^2$ is of pure dimension 1, [19]. Then L is properly embedded in \mathbb{C}^2 (j is proper). If $L \setminus \Sigma$ is not transcendental, then L defines a separatrix through the point $r = \lim(L \setminus \Sigma) \in \operatorname{Sing}(\mathcal{F}_X) \cap L_\infty$. Therefore $\overline{L} \cup \{r\} \simeq \mathbb{CP}^1$ is an algebraic curve by Chow’s Theorem.

Theorem 2.1. X has at most one zero in \mathbb{C}^2.

Proof. Suppose that $p_1 \neq p_2$ are zeroes of X. By [6], there exists a separatrix Σ_i through p_i, $i = 1, 2$. First assume that each Σ_i is algebraic at infinity through a nondicritical p_i. Let $\Phi \in Aut(\mathbb{C}^2)$, given in Proposition [22], such that $\Phi(\Sigma_1)$ is a line $L_{\Phi(p_1)}$ through $\Phi(p_1)$. Let $\overline{C_2}$ be the closure of $C_2 := \Phi(\Sigma_2)$ in \mathbb{CP}^2. Thus $L_{\Phi(p_1)} \cap C_2 = \{r\} \subset L_\infty$; otherwise if $\alpha : \mathbb{P}^2 \to C_2$ is the resolution of $\overline{C_2}$, α^*X extends to Z_2 with at least three zeroes, which is a contradiction. Analogously, $L_\infty \cap \overline{C_2} = \{r\}$. As $L_{\Phi(p_1)}$ and L_∞ just intersect $\overline{C_2}$ at r, $\overline{C_2}$ has to be a line as it cannot have two branches at r. Suppose that $L_{\Phi(p_1)} = \{z_1 = a\}$ and $L_{\Phi(p_2)} :=$
$C_2 = \{z_1 = b\}$. The orbit of $(z_1^0, z_2^0) \in \mathbb{C}^2$ with $a \neq z_1^0 \neq b$ is defined by the image of the entire map $\varphi(x, y) = \varphi(t, z_1^0, z_2^0) = (z_1(t), z_2(t))$, where φ is the flow of Φ, X. Since $z_1(\mathbb{C}) \subset \mathbb{C} \setminus \{a, b\}$, by Picard’s Theorem $z_1(t) \equiv k \in \mathbb{C}$, and thus $\varphi(z_1^0, z_2^0)(\mathbb{C})$ is contained in a line parallel to both $L_{\Phi(p_1)}$ and $L_{\Phi(p_2)}$, and hence $\Phi, X = \frac{\partial}{\partial z_1^0}$, a contradiction.

Observe that if p_1 is dicritical, Σ_i can be taken to be transcendental at infinity. Otherwise Darboux’s Theorem and Proposition 2.1 imply that X has at most one zero. Thus it only remains to analyze the case when Σ_i is transcendental at infinity. Now, we take from [4] the notion of P-completeness, that will be used in what follows. Let $P : \mathbb{C}^2 \to \mathbb{C}$ be a nonconstant polynomial. \mathcal{F}_X is P-complete if there exists a finite set $Q \subset \mathbb{C}$ such that, for all $t \not\in Q$, $P^{-1}(t)$ is transverse to \mathcal{F}_X and there is a neighbourhood U_t of t in \mathbb{C} such that $P_1^{-1}(U_t)$ is a fibration and $\mathcal{F}_X|_{P^{-1}(U_t)}$ defines a local trivialization on it. Thus, if one Σ_i is transcendental at infinity, it follows from [4] that there is a nonconstant (primitive) polynomial $P : \mathbb{C}^2 \to \mathbb{C}$ of type \mathbb{C} or \mathbb{C}^* such that \mathcal{F}_X is P-complete. The set of points where \mathcal{F}_X is not transverse to P is an algebraic curve $S \subset P^{-1}(Q)$, so $p_i \in S$. If P is of type \mathbb{C}, since by [16] there is $\varphi \in \text{Aut}[\mathbb{C}^2]$ such that $P \circ \varphi(z_1, z_2) = z_1$, one sees as above that $p_i \in \{z_1 = \lambda\}$, for $i = 1, 2$, again a contradiction.

On the other hand, if P is of type \mathbb{C}^* by [17], as noted in the proof of Proposition 2.1 after a polynomial automorphism φ, $P \circ \varphi$ can be easily written and since $(P \circ \varphi)^{-1}(\lambda) \simeq \mathbb{C}^*$ for all $\lambda \neq 0$, and X is complete on each component of S, one has that $p_i \in (P \circ \varphi)^{-1}(0)$. Therefore $S \cap (P \circ \varphi)^{-1}(0) = \{z_1 = 0\}$ or $\{z_1 z_2 = 0\}$, but in both cases one has two zeroes on an invariant line of X, a contradiction. □

Theorem 2.2. Let p be a zero of X which is not of Poincaré-Dulac type, and let S be the set of separatrices through p that are algebraic at infinity. Up to polynomial automorphism,

(1) when p is dicritical and all the separatrices through it belong to S: $X = mz_1 \frac{\partial}{\partial z_1} + nz_2 \frac{\partial}{\partial z_2}$ where $m, n \in \mathbb{Z}^*$, and $mn < 0$;

(2) when p is nondicritical, but $\sharp S \geq 2$: $X = z_1(\lambda + qf(z_1^0 z_2^0)) \frac{\partial}{\partial z_1} + z_2(\mu + pf(z_1^0 z_2^0)) \frac{\partial}{\partial z_2}$, where $f \in \mathbb{C}[z]$, $p, q \in \mathbb{N}$ and $\lambda \mu \in \mathbb{C}^*$.

If there is at least one separatrix $\Sigma \not\in S$, then $\sharp S \geq 1$, and either

(3) $X = \lambda z_1 \frac{\partial}{\partial z_1} + (a(z_1) + b(z_1)z_2) \frac{\partial}{\partial z_2}$, with $a, b \in \mathbb{C}[z_1]$ and $b(0) \lambda \in \mathbb{C}^*$, or

(4) \mathcal{F}_X is P-complete for a polynomial $P = (z_1^m (z_1^2 + p(z_1))^n)$, where $m, n, l \in \mathbb{N}^+$, $p \in \mathbb{C}[z_1]$ of degree $\leq l - 1$ with $p(0) \neq 0$, or $P = z_1^m z_2^n$.

Proof. By Theorem 2.1 p is the unique zero of X in \mathbb{C}^2. Suppose that $p = (0, 0)$. Since the restriction of X to any open neighbourhood of p is semicomplete, [13], one has that $\lambda \mu \neq 0$, [14].

We can distinguish two cases. Suppose that p is dicritical. Then, if there is a rational first integral, one has by Proposition 2.1 that X can be written as in (1). If there is no rational first integral, there is a separatrix through p, Σ, which is transcendental at infinity, and according to [4], the foliation \mathcal{F}_X is P-complete, with P of type \mathbb{C} or \mathbb{C}^*. As noted in the proof of Theorem 2.1 if P is of type \mathbb{C}, then $P = z_1$ and it follows that X is as in (3), while if it is of type \mathbb{C}^*, then P can be written so that it reads as in (4).

Assume now that p is nondicritical. As p is not of Poincaré-Dulac type, there are at least two separatrices through p, [3] and [11]. If at least two of them
are algebraic at infinity, according to Propositions 2.2 and 2.3 they are defined by the smooth algebraic curves $\Gamma_1 = \{P_1 = 0\}$ and $\Gamma_2 = \{P_2 = 0\}$. Consider the simply connected algebraic curve $\Gamma_1 \cup \Gamma_2 = \{P_1P_2 = 0\}$. After a polynomial automorphism Φ, $\Phi(\Gamma_1 \cup \Gamma_2) = \{z_1^2z_2^2 = 0\}$, [21]. Moreover, since Φ_*X is complete on $\mathbb{C}^2 \setminus \{(z_1 = 0) \cup \{z_2 = 0\}\} \simeq (\mathbb{C}^*)^2$, the classification of such vector fields, [2], shows that Φ_*X takes the form (2) of the statement. The nonexistence of two separatrices through p algebraic at infinity implies the existence of at least one Σ which is transcendental at infinity, and by [4]; X can be expressed as it is pointed out in (3) or (4).

3. Completeness and the Jacobian Conjecture

Jacobian Conjecture. If $F : \mathbb{C}^n \to \mathbb{C}^n$ is a polynomial map such that $\det(JF) \in \mathbb{C}^*$, then F is invertible, that is, F has an inverse which is also a polynomial map.

In fact, from a theorem due to Bialynicki-Birula and Rosenlicht, [20], if F is injective it is surjective, and the inverse is a polynomial map. Thus the Jacobian Conjecture is equivalent to: “if $F : \mathbb{C}^n \to \mathbb{C}^n$ is a polynomial map such that $\det(JF) \in \mathbb{C}^*$, then F is injective”. The conjecture is true for $n = 1$, and is an open problem for $n \geq 2$.

Following Nousiainen and Sweedler, [20], we can associate to $F = (F_1, \ldots, F_n)$ n polynomial vector fields on \mathbb{C}^n, $\partial F_1, \ldots, \partial F_n$, defined by

$$\left(\frac{\partial}{\partial F_1}, \ldots, \frac{\partial}{\partial F_n} \right) := \left(\frac{\partial}{\partial z_1}, \ldots, \frac{\partial}{\partial z_n} \right) (JF)^{-1},$$

with the following properties:

1. They are \mathbb{C}-linearly independent on \mathbb{C}^n.

2. $\mathcal{L} \frac{\partial}{\partial F_j} F_j = DF_j \left(\frac{\partial}{\partial F_i} \right) = \delta_{ij}$ and $\left[\frac{\partial}{\partial F_i}, \frac{\partial}{\partial F_j} \right] = 0$, with $1 \leq i, j \leq n$.

Therefore, we obtain for each $i = 1, \ldots, n$ a nonsingular algebraic foliation by curves in \mathbb{C}^n defined by the vector field $\frac{\partial}{\partial F_i}$ whose leaves are given by the intersection of the level sets of F_j, $j \neq i$.

Theorem 3.1. Let $F : \mathbb{C}^n \to \mathbb{C}^n$ be a polynomial map such that $\det(JF) \in \mathbb{C}^*$. Then F is injective if and only if the polynomial vector fields $\frac{\partial}{\partial F_i}$, $i = 1, \ldots, n$, are complete.

Proof. Suppose that F is injective. If $F_i(z_1, \ldots, z_n) = w_i$, $i = 1, \ldots, n$, as the vector fields $\frac{\partial}{\partial w_i}$ are complete, $\frac{\partial}{\partial F_i} = F^*\frac{\partial}{\partial w_i}$ are also complete.

Conversely, if $\frac{\partial}{\partial F_i}$, $i = 1, \ldots, n$, are complete, and there are two different points $p, q \in \mathbb{C}^n$ such that $F(p) = F(q) = \alpha = (\alpha_1, \ldots, \alpha_n)$, there are n leaves $L_i = \bigcap_j \{F_j = \alpha_j\}$, one of each foliation induced by $\frac{\partial}{\partial F_i}$, having at least two different points p and q of intersection.

But each leaf L_i, $i = 1, \ldots, n$, is equipped with a holomorphic 1–form $DF_i|_{L_i}$ such that $DF_i|_{L_i}(\frac{\partial}{\partial F_i}) = 1$. Following [13], since $\frac{\partial}{\partial F_i}$ is complete the 1–form $DF_i|_{L_i}$ is defined by the “dérivée du temps”, which is locally given by its flow.

Let us fix $i_0 \in \{1, \ldots, n\}$, and an injective smooth path $c_{i_0} : [0, 1] \to L_{i_0}$ from p to q. The integral of $DF_{i_0}|_{L_{i_0}}$ along c_{i_0} has to be nonzero [13], but $\int_{c_{i_0}} DF_{i_0}|_{L_{i_0}} = F_{i_0}(q) - F_{i_0}(p) = 0$. Thus F is injective.
After our work was completed, we noticed that Theorem 3.1 was proved by Meisters and Olech in [12] for the real case in another context. We denote by \mathcal{D} the $\mathbb{C}[z_1, \ldots, z_n]$-module of all \mathbb{C}-derivations of $\mathbb{C}[z_1, \ldots, z_n]$. It is well known that \mathcal{D} is free and of rank n. A basis is said to be commutative when $[X_i, X_j] = 0$, $0 \leq i, j \leq n$. If each X_i is complete, we will say that it is complete.

Proposition 3.1. A commutative basis (X_1, \ldots, X_n) of \mathcal{D} is complete if and only if there exists a polynomial automorphism F of \mathbb{C}^n such that $F_i = \partial F_i / \partial z_i$, $i = 1, \ldots, n$.

Proof. Suppose first that (X_1, \ldots, X_n) is a complete commutative basis. Then by a result of A. Nowicki [20], there exists a polynomial map $F = (F_1, \ldots, F_n)$ with $\det(JF) \in \mathbb{C}^*$ such that $X_i = \partial F_i / \partial z_i$. Thus by Theorem 3.1 F is a polynomial automorphism such that $X_i = (F^{-1})_* \partial / \partial z_i$.

Now, suppose that there is a polynomial automorphism F of \mathbb{C}^n such that $F_i X_i = \partial / \partial z_i$. Then, the X_i are complete and moreover $[X_i, X_j] = (F^{-1})_* \left[\partial / \partial z_i, \partial / \partial z_j \right] = 0$, thus proving the converse. \hfill \square

Corollary 3.1. The Jacobian Conjecture holds if and only if every commutative basis of \mathcal{D} is complete.

References

Departamento de Álgebra, Facultad de Matemáticas, Universidad Complutense de Madrid, Ciudad Universitaria 28040 Madrid, Spain

E-mail address: alvarob@mat.ucm.es