Perfectly normal non-metrizable non-Archimedean spaces are generalized Souslin lines

Authors:
Yuan-Qing Qiao and Franklin D. Tall

Journal:
Proc. Amer. Math. Soc. **131** (2003), 3929-3936

MSC (2000):
Primary 54F05, 54A35; Secondary 03E05, 03E35

Published electronically:
July 16, 2003

MathSciNet review:
1999943

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we prove the equivalence between the existence of perfectly normal, non-metrizable, non-archimedean spaces and the existence of ``generalized Souslin lines", *i.e.,* linearly ordered spaces in which every collection of disjoint open intervals is -discrete, but which do not have a -discrete dense set. The key ingredient is the observation that every first countable linearly ordered space has a dense non-archimedean subspace.

**[BDDGNRTW]**Z. Balogh, S. Davis, A. Dow, G. Gruenhage, P. Nyikos, M. E. Rudin, F. D. Tall, and S. Watson, New Classic Problems,*Top. Proc.***15**(1990) 201-220.**[BL]**Jan van Mill and George M. Reed (eds.),*Open problems in topology*, North-Holland Publishing Co., Amsterdam, 1990. MR**1078636****[F]**M. J. Faber,*Metrizability in generalized ordered spaces*, Mathematisch Centrum, Amsterdam, 1974. Mathematical Centre Tracts, No. 53. MR**0418053****[J]**A. Jones, On dense non-archimedean spaces of linearly ordered spaces, preprint.**[N]**Peter Nyikos,*A survey of zero-dimensional spaces*, Topology (Proc. Ninth Annual Spring Conf., Memphis State Univ., Memphis, Tenn., 1975) Lecture Notes in Pure and Appl. Math., Vol. 24, Dekker, New York, 1976, pp. 87–114. MR**0442870****[P]**S. Purisch,*The orderability of non-Archimedean spaces*, Topology Appl.**16**(1983), no. 3, 273–277. MR**722120**, 10.1016/0166-8641(83)90024-X**[Q1]**Y.-Q. Qiao, On Non-Archimedean Spaces, Ph.D. Thesis, University of Toronto, 1992.**[Q2]**Yuan-Qing Qiao,*Martin’s axiom does not imply perfectly normal non-Archimedean spaces are metrizable*, Proc. Amer. Math. Soc.**129**(2001), no. 4, 1179–1188. MR**1610777**, 10.1090/S0002-9939-00-04940-6**[QT]**Yuan-Qing Qiao and Franklin D. Tall,*Perfectly normal non-Archimedean spaces in Mitchell models*, Topology Proc.**18**(1993), 231–244. MR**1305135****[T]**Stevo B. Todorčević,*Some consequences of 𝑀𝐴+¬𝑤𝐾𝐻*, Topology Appl.**12**(1981), no. 2, 187–202. MR**612015**, 10.1016/0166-8641(81)90020-1**[W]**Jan van Mill and George M. Reed (eds.),*Open problems in topology*, North-Holland Publishing Co., Amsterdam, 1990. MR**1078636**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
54F05,
54A35,
03E05,
03E35

Retrieve articles in all journals with MSC (2000): 54F05, 54A35, 03E05, 03E35

Additional Information

**Yuan-Qing Qiao**

Affiliation:
Department of Mathematics, University of Toronto, Toronto, Canada M5S 3G3

**Franklin D. Tall**

Affiliation:
Department of Mathematics, University of Toronto, Toronto, Canada M5S 3G3

DOI:
https://doi.org/10.1090/S0002-9939-03-06966-1

Keywords:
Non-archimedean,
perfect,
metrizable,
tree base,
generalized Souslin line,
generalized Lusin line,
$\sigma$-discrete chain condition

Received by editor(s):
December 10, 1992

Received by editor(s) in revised form:
July 5, 2002

Published electronically:
July 16, 2003

Additional Notes:
The authors acknowledge support from grant A-7354 of the Natural Sciences and Engineering Research Council of Canada

Communicated by:
Andreas Blass

Article copyright:
© Copyright 2003
American Mathematical Society