Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Principal eigenvalues for indefinite weight problems in all of $\mathbb{R}^{d}$


Author: N. Bejhaj Rhouma
Journal: Proc. Amer. Math. Soc. 131 (2003), 3747-3755
MSC (2000): Primary 31B20, 35J25, 35P05
DOI: https://doi.org/10.1090/S0002-9939-03-06967-3
Published electronically: February 14, 2003
MathSciNet review: 1998182
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We show the existence of principal eigenvalues of the problem $-\triangle u=\lambda gu$ in $\mathbb{R}^{d}$ where $g$ is an indefinite weight function. The existence of a continuous family of principal eigenvalues is demonstrated. Also, we prove the existence of a principal eigenvalue for which the principal eigenfunction $u\rightarrow 0$ at $\infty$.


References [Enhancements On Off] (What's this?)

  • 1. L. Allegretto: Principal eigenvalues for indefinite weight elliptic problems in $\mathbb{R}^{N}$. Proc. Amer. Math. Soc., 116 (1992), 701-706. MR 93a:35114
  • 2. M. Aizenman and B. Simon: Brownian motion and Harnack inequality for schrödinger operator. Comm. Pure Appl. Math., 35 (1982), 209-273. MR 84a:35062
  • 3. N. Belhaj Rhouma and M. Mosbah: On the existence of positive eigenvalues for linear and nonlinear equations with indefinite weight. Appl. Anal., 81 (2002), 615-625.
  • 4. A. Boukricha, W. Hansen and H. Hueber: Continuous of the generalized Schrödinger equation and perturbation of harmonic spaces. Expo. Math., 5 (1987), 97-135. MR 88g:31019
  • 5. K.J. Brown, C. Cosner and J. Flekinger: Principal eigenvalues for problems with indefinite weight functions on $\mathbb{R}^{N}$. Proc. Amer. Math. Soc., 109 (1990), 147-155. MR 90m:35140
  • 6. K.J. Brown and A. Tertikas: The existence of principal eigenvalues for problem with indefinite weight functions on $\mathbb{R}^{N}$. Proc. Royal Soc. Edinburgh., 123 A (1993), 561-569. MR 94i:35136
  • 7. W. Hansen: Valeurs propres pour l'opérateurs de schrödinger. Séminaire de Théorie de Potentiel 9. Lecture Notes in Math., 1393 (1989), 117-134.
  • 8. W. Hansen and H. Hueber: Eigenvalues in Potential theory. J. Diff. Equ., 73 (1988), 133-152.
  • 9. P. Hess and T. Kato: On some linear and nonlinear eigenvalue problems with an indefinite weight functions. Comm. Par. Diff. Equ., 5, (1980). 999-1030. MR 81m:35102
  • 10. Z. Jin: Principal eigenvalues with indefinite weight functions. Trans. Amer. Math. Soc., 349 (1997), 1945-1959. MR 97h:35056
  • 11. Y.Li and W.M. Ni: On conformal scalar curvature equations in $\mathbb{R}^{N}$. Duke Math J., 57 (1988) 895-924. MR 90a:58187
  • 12. J. Maly and W.P. Ziemer: Fine Regularity of Solutions of Elliptic Partial Differential equations. Amer. Math. Soc., Mathematical Surveys and Monographs. V 51. MR 98h:35080
  • 13. A. Manes and A.M. Micheletti: Un' estesione delle teoria variaziaonale classica degli autovalori per operatori elliptici del secondo ordine. Boll. Un. Mat. Italiana., 7 (1973), 285-301. MR 49:9402
  • 14. Z. Zhao: On the existence of positive solutions of nonlinear elliptic equations. A probalistic potential theory approach. Duke. Math. J., 69, (2), (1993), 247-258. MR 94c:35090

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 31B20, 35J25, 35P05

Retrieve articles in all journals with MSC (2000): 31B20, 35J25, 35P05


Additional Information

N. Bejhaj Rhouma
Affiliation: Institut Préparatoire aux Études d’Ingénieurs de Tunis, 2, rue Jawaherlel Nehru, 1008 Montfleury, Tunis, Tunisia
Email: Nedra.BelHajRhouma@ipeit.rnu.tn

DOI: https://doi.org/10.1090/S0002-9939-03-06967-3
Keywords: Indefinite weight, eigenvalue, Kato-class, Green function
Received by editor(s): November 20, 2001
Received by editor(s) in revised form: June 25, 2002
Published electronically: February 14, 2003
Communicated by: Juha M. Heinonen
Article copyright: © Copyright 2003 American Mathematical Society

American Mathematical Society