Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A property of weakly Krull domains


Authors: D. D. Anderson and Muhammad Zafrullah
Journal: Proc. Amer. Math. Soc. 131 (2003), 3689-3692
MSC (2000): Primary 13F05
DOI: https://doi.org/10.1090/S0002-9939-03-07047-3
Published electronically: April 30, 2003
MathSciNet review: 1998175
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We show that a weakly Krull domain $D$ satisfies $(\ast )$: for every pair $ a,b\in D\backslash \{0\}$ there is an $n=n(a,b)\in \mathbb{N} $ such that $ (a,b^{n})$ is $t$-invertible. For $D$ Noetherian, $D$ satisfies $(\ast )$ if and only if every grade-one prime ideal of $D$ is of height one. We also show that a modification of $(\ast )$ can be used to characterize Noetherian domains that are one-dimensional.


References [Enhancements On Off] (What's this?)

  • [AMZ] D.D. Anderson, J.L. Mott and M. Zafrullah, Finite character representations for integral domains, Boll. Un. Mat. Ital. B (7) 6 (1992), 613-630. MR 93k:13001
  • [B] V. Barucci, Mori domains, Non-Noetherian Commutative Ring Theory, Math. Appl., vol. 520, Kluwer Acad. Publ., Dordrecht, 2000, pp. 57-73. MR 2002h:13028
  • [CMZ] D. Costa, J.L. Mott and M. Zafrullah, The construction $D+XD_{S}[X]$, J. Algebra 53 (1978), 423-439. MR 58:22046
  • [G] R. Gilmer, Multiplicative Ideal Theory, Queen's Papers in Pure and Appl. Math., vol. 90, Queen's University, Kingston, ON, 1992, corrected reprint of the 1972 edition, Pure Appl. Math., vol. 12, Marcel Dekker, New York. MR 93j:13001
  • [HH] J.R. Hedstrom and E.G. Houston, Some remarks on star-operations, J. Pure Appl. Algebra 18 (1980), 37-44. MR 81m:13008
  • [K] I. Kaplansky, Commutative Rings, University of Chicago Press, Chicago, IL, 1974, revised edition of the 1970 edition, Allyn and Bacon, Boston. MR 49:10674
  • [MMZ] S. Malik, J.L. Mott and M. Zafrullah, On $t$-invertibility, Comm. Algebra 16 (1988), 149-170. MR 88j:13022
  • [O] J. Ohm, Some counterexamples related to integral closure in $D[[x]]$, Trans. Amer. Math. Soc. 122 (1966), 321-333. MR 34:2613
  • [P] M. Picavet-L'Hermitte, Factorization in some orders with a PID as integral closure, Algebraic Number Theory and Diophantine Analysis (Graz, 1998), de Gruyter, Berlin, 2000, pp. 365-390. MR 2001h:13001
  • [R] P. Ribenboim, Anneaux normaux réels à caractère fini, Summa Brasil. Math. 3 (1956), 213-253. MR 20:3860
  • [Z] M. Zafrullah, Putting $t$-invertibility to use, Non-Noetherian Commutative Ring Theory, Math. Appl., vol. 520, Kluwer Acad. Publ., Dordrecht, 2000, pp. 429-457. MR 2002g:13009

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 13F05

Retrieve articles in all journals with MSC (2000): 13F05


Additional Information

D. D. Anderson
Affiliation: Department of Mathematics, University of Iowa, Iowa City, Iowa 52242
Email: dan-anderson@uiowa.edu

Muhammad Zafrullah
Affiliation: Department of Mathematics, Idaho State University, Pocatello, Idaho 83209-8085
Email: mzafrullah@usa.net

DOI: https://doi.org/10.1090/S0002-9939-03-07047-3
Keywords: Weakly Krull
Received by editor(s): August 12, 2002
Published electronically: April 30, 2003
Communicated by: Bernd Ulrich
Article copyright: © Copyright 2003 American Mathematical Society

American Mathematical Society