Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Construction of best Bregman approximations in reflexive Banach spaces


Authors: Heinz H. Bauschke and Patrick L. Combettes
Journal: Proc. Amer. Math. Soc. 131 (2003), 3757-3766
MSC (2000): Primary 41A65, 90C25; Secondary 41A29, 41A50
DOI: https://doi.org/10.1090/S0002-9939-03-07050-3
Published electronically: April 24, 2003
MathSciNet review: 1998183
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: An iterative method is proposed to construct the Bregman projection of a point onto a countable intersection of closed convex sets in a reflexive Banach space.


References [Enhancements On Off] (What's this?)

  • 1. H. H. Bauschke, J. M. Borwein, and P. L. Combettes, Essential smoothness, essential strict convexity, and Legendre functions in Banach spaces, Comm. Contemp. Math., 3 (2001), 615-647. MR 2002k:49040
  • 2. H. H. Bauschke, J. M. Borwein, and P. L. Combettes, Bregman monotone optimization algorithms, SIAM J. Control Optim., to appear.
  • 3. H. H. Bauschke and P. L. Combettes, A weak-to-strong convergence principle for Fejér-monotone methods in Hilbert spaces, Math. Oper. Res., 26 (2001), 248-264.
  • 4. H. H. Bauschke and A. S. Lewis, Dykstra's algorithm with Bregman projections: A convergence proof, Optimization, 48 (2000), 409-427. MR 2002e:90062
  • 5. J. M. Borwein and M. Fabian, On convex functions having points of Gâteaux differentiability which are not points of Fréchet differentiability, Canad. J. Math., 45 (1993), 1121-1134. MR 94i:46018
  • 6. J. P. Boyle and R. L. Dykstra, A method for finding projections onto the intersection of convex sets in Hilbert spaces, in Lecture Notes in Statistics, Vol. 37, Springer-Verlag, New York, 1986, 28-47. MR 87m:49024
  • 7. L. M. Bregman, Y. Censor, and S. Reich, Dykstra's algorithm as the nonlinear extension of Bregman's optimization method, J. Convex Anal., 6 (1999), 319-333. MR 2001e:90054
  • 8. L. M. Bregman, Y. Censor, S. Reich, and Y. Zepkowitz-Malachi, Finding the projection of a point onto the intersection of convex sets via projections onto halfspaces, preprint, 2002.
  • 9. D. Butnariu and A. N. Iusem, Totally Convex Functions for Fixed Points Computation and Infinite Dimensional Optimization, Kluwer, Boston, MA, 2000. MR 2002k:90002
  • 10. D. Butnariu, A. Iusem, and C. Zalinescu, On uniform convexity, total convexity and the convergence of the proximal point and outer Bregman projection algorithms in Banach spaces, J. Convex Anal., to appear.
  • 11. Y. Censor and S. Reich, The Dykstra algorithm with Bregman projections, Commun. Appl. Anal., 2 (1998), 407-419. MR 99e:90111
  • 12. Y. Censor and S. A. Zenios, Parallel Optimization - Theory, Algorithms and Applications, Oxford University Press, New York, 1997. MR 2000a:90002
  • 13. P. L. Combettes, Strong convergence of block-iterative outer approximation methods for convex optimization, SIAM J. Control Optim., 38 (2000), 538-565. MR 2001b:90064
  • 14. F. Deutsch, Best Approximation in Inner Product Spaces, Springer-Verlag, New York, 2001. MR 2002c:41001
  • 15. R. Deville, G. Godefroy, and V. Zizler, Smoothness and Renormings in Banach Spaces, Wiley, New York, 1993. MR 94d:46012
  • 16. T. Dumont, Décomposition par Projection de Certains Problèmes aux Limites Elliptiques non Linéaires, Thèse, Université Claude Bernard, Lyon, France, 1978.
  • 17. R. Gárciga-Otero, A strongly convergent hybrid proximal point method in Banach spaces, conference talk (presented at the IV Brazilian Workshop on Continuous Optimization, Rio de Janeiro, July 15, 2002) reporting on a forthcoming paper with B. F. Svaiter.
  • 18. Y. Haugazeau, Sur les Inéquations Variationnelles et la Minimisation de Fonctionnelles Convexes, Thèse, Université de Paris, Paris, France, 1968.
  • 19. G. Pierra, Eclatement de contraintes en parallèle pour la minimisation d'une forme quadratique, in Lecture Notes in Computer Science, Vol. 41, Springer-Verlag, New York, 1976, 200-218.
  • 20. E. Resmerita, On total convexity, Bregman projections and stability in Banach spaces, preprint, 2002.
  • 21. I. Singer, Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces, Springer-Verlag, New York, 1970. MR 42:4937
  • 22. M. V. Solodov and B. F. Svaiter, Forcing strong convergence of proximal point iterations in a Hilbert space, Math. Programming A, 87 (2000), 189-202. MR 2000j:90077
  • 23. J. D. Vanderwerff, personal communication, 2002.
  • 24. C. Zalinescu, On uniformly convex functions, J. Math. Anal. Appl., 95 (1983), 344-374. MR 85a:26018
  • 25. E. Zeidler, Nonlinear Functional Analysis and Its Applications III - Variational Methods and Optimization, Springer-Verlag, New York, 1985. MR 90b:49005

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 41A65, 90C25, 41A29, 41A50

Retrieve articles in all journals with MSC (2000): 41A65, 90C25, 41A29, 41A50


Additional Information

Heinz H. Bauschke
Affiliation: Department of Mathematics and Statistics, University of Guelph, Guelph, Ontario, Canada N1G 2W1
Email: hbauschk@uoguelph.ca

Patrick L. Combettes
Affiliation: Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie – Paris 6, 75005 Paris, France
Email: plc@math.jussieu.fr

DOI: https://doi.org/10.1090/S0002-9939-03-07050-3
Keywords: Best approximation, Bregman distance, decomposition, Haugazeau
Received by editor(s): June 28, 2002
Published electronically: April 24, 2003
Additional Notes: The first author was supported by the Natural Sciences and Engineering Research Council of Canada.
Communicated by: Jonathan M. Borwein
Article copyright: © Copyright 2003 American Mathematical Society

American Mathematical Society