Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Une inégalité du type Payne-Polya-Weinberger pour le laplacien brut


Author: Bruno Colbois
Journal: Proc. Amer. Math. Soc. 131 (2003), 3937-3944
MSC (2000): Primary 58J50; Secondary 35P15
DOI: https://doi.org/10.1090/S0002-9939-03-07056-4
Published electronically: April 30, 2003
MathSciNet review: 1999944
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let us consider a riemannian vector bundle $E$ with compact basis $(M,g)$ and the rough laplacian $\bar{\Delta}$ associated to a connection $D$ on $E$. We prove that the eigenvalues of $\bar{\Delta}$ are bounded above by a function of the first eigenvalue and of the geometry of $(M,g)$, but independently of the choice of the connection $D$.


References [Enhancements On Off] (What's this?)

  • [AB] M.S. Ashbaugh, R. Benguria, Isoperimetric inequalities for eigenvalue ratios in Partial differential equations of elliptic type (Cortona 1990), Symp. Math. 35, Cambridge Univ. Press, 1-36. MR 95h:35158
  • [BCC] G. Besson, B. Colbois, G. Courtois, Sur la multiplicité de la première valeur propre de l'opérateur de Schrödinger avec champ magnétique sur la sphère $S^2$, Trans. Amer. Math. Soc. 350 (1) (1998), 331-345. MR 98d:58188
  • [Be] P. Bérard, From vanishing theorems to estimating theorem: the Bochner method revisited, Bull. Amer. Math. Soc. 19 (1988), 371-406. MR 89i:58152
  • [CV] Y. Colin de Verdière, Construction de laplaciens dont une partie finie du spectre est donnée, Ann. Ec. Norm. Sup. $4^{e}$ série, t. 20 (1987), 599-615. MR 90d:58156
  • [Ch] I. Chavel, Eigenvalues in Riemannian Geometry, Ac. Press (1984). MR 86g:58140
  • [Do] J. Dodziuk, Eigenvalues of the Laplacian on forms, Proc. Amer. Math. Soc. 85, 3 (1982), 437-443. MR 84k:58223
  • [GM] S. Gallot, D. Meyer, D'un résultat hilbertien à un principe de comparaison entre spectres. Applications, Ann. Scient. Ec. Norm. Sup. série 4, t. 21 (1988), 561-591. MR 90k:58236
  • [Gu] P. Guerini, Spectre du Laplacien agissant sur les formes différentielles d'un domaine euclidien, Thèse de Doctorat, Université de Savoie (2001).
  • [Sa] T. Sakai, Riemannian Geometry, American Math. Soc., Providence, Rhode Island (1996). MR 97f:53001

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 58J50, 35P15

Retrieve articles in all journals with MSC (2000): 58J50, 35P15


Additional Information

Bruno Colbois
Affiliation: Institut de Mathématiques, Université de Neuchâtel, CH-2007 Neuchâtel, Switzerland
Email: bruno.colbois@unine.ch

DOI: https://doi.org/10.1090/S0002-9939-03-07056-4
Keywords: Rough Laplacian, spectrum, Riemannian bundle
Received by editor(s): July 6, 2002
Published electronically: April 30, 2003
Communicated by: Jozef Dodziuk
Article copyright: © Copyright 2003 American Mathematical Society

American Mathematical Society