Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

   
Mobile Device Pairing
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)

 

The scenery factor of the ${[T,T^{-1}]}$ transformation is not loosely Bernoulli


Author: Christopher Hoffman
Journal: Proc. Amer. Math. Soc. 131 (2003), 3731-3735
MSC (2000): Primary 28D05
Published electronically: July 9, 2003
MathSciNet review: 1998180
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Kalikow (1982) proved that the $[T,T^{-1}]$transformation is not isomorphic to a Bernoulli shift. We show that the scenery factor of the $[T,T^{-1}]$transformation is not isomorphic to a Bernoulli shift. Moreover, we show that it is not Kakutani equivalent to a Bernoulli shift.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 28D05

Retrieve articles in all journals with MSC (2000): 28D05


Additional Information

Christopher Hoffman
Affiliation: Department of Mathematics, University of Washington, Seattle, Washington 98195
Email: hoffman@math.washington.edu

DOI: http://dx.doi.org/10.1090/S0002-9939-03-07206-X
PII: S 0002-9939(03)07206-X
Received by editor(s): June 7, 2002
Published electronically: July 9, 2003
Communicated by: Michael Handel
Article copyright: © Copyright 2003 American Mathematical Society