Limit sets and regions of discontinuity of Teichmüller modular groups
Author:
Ege Fujikawa
Journal:
Proc. Amer. Math. Soc. 132 (2004), 117126
MSC (2000):
Primary 30F60; Secondary 30C62
Published electronically:
February 28, 2003
MathSciNet review:
2021254
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: For a Riemann surface of infinite type, the Teichmüller modular group does not act properly discontinuously on the Teichmüller space, in general. As an analogy to the theory of Kleinian groups, we divide the Teichmüller space into the limit set and the region of discontinuity for the Teichmüller modular group, and observe their properties.
 1.
Alan
F. Beardon, The geometry of discrete groups, Graduate Texts in
Mathematics, vol. 91, SpringerVerlag, New York, 1983. MR 698777
(85d:22026)
 2.
C. J. Earle, F. P. Gardiner and N. Lakic, Teichmüller spaces with asymptotic conformal equivalence, preprint.
 3.
Adam
Lawrence Epstein, Effectiveness of Teichmüller modular
groups, In the tradition of Ahlfors and Bers (Stony Brook, NY, 1998)
Contemp. Math., vol. 256, Amer. Math. Soc., Providence, RI, 2000,
pp. 69–74. MR 1759670
(2001a:30059), http://dx.doi.org/10.1090/conm/256/03997
 4.
E. Fujikawa, H. Shiga and M. Taniguchi, On the action of the mapping class group for Riemann surfaces of infinite type, J. Math. Soc. Japan, to appear.
 5.
Frederick
P. Gardiner, Teichmüller theory and quadratic
differentials, Pure and Applied Mathematics (New York), John Wiley
& Sons, Inc., New York, 1987. A WileyInterscience Publication. MR 903027
(88m:32044)
 6.
F. Hausdorff, Set Theory, Third Edition, Chelsea Publishing Company, New York, 1978.
 7.
Y.
Imayoshi and M.
Taniguchi, An introduction to Teichmüller spaces,
SpringerVerlag, Tokyo, 1992. Translated and revised from the Japanese by
the authors. MR
1215481 (94b:32031)
 8.
J.
Peter Matelski, A compactness theorem for Fuchsian groups of the
second kind, Duke Math. J. 43 (1976), no. 4,
829–840. MR 0432921
(55 #5900)
 9.
Katsuhiko
Matsuzaki and Masahiko
Taniguchi, Hyperbolic manifolds and Kleinian groups, Oxford
Mathematical Monographs, The Clarendon Press, Oxford University Press, New
York, 1998. Oxford Science Publications. MR 1638795
(99g:30055)
 10.
Subhashis
Nag, The complex analytic theory of Teichmüller spaces,
Canadian Mathematical Society Series of Monographs and Advanced Texts, John
Wiley & Sons, Inc., New York, 1988. A WileyInterscience Publication.
MR 927291
(89f:32040)
 11.
M. Tsuji, Potential Theory in Modern Function Theory, Chelsea, New York, 1959.
 12.
Scott
Wolpert, The length spectra as moduli for compact Riemann
surfaces, Ann. of Math. (2) 109 (1979), no. 2,
323–351. MR
528966 (80j:58067), http://dx.doi.org/10.2307/1971114
 1.
 A. F. Beardon, The Geometry of Discrete Groups, Graduate Texts in Mathematics 91, Springer, 1983. MR 85d:22026
 2.
 C. J. Earle, F. P. Gardiner and N. Lakic, Teichmüller spaces with asymptotic conformal equivalence, preprint.
 3.
 A. Epstein, Effectiveness of Teichmüller modular groups, In the tradition of Ahlfors and Bers, Contemporary Math. 256, American Mathematical Society, 2000, 6974. MR 2001a:30059
 4.
 E. Fujikawa, H. Shiga and M. Taniguchi, On the action of the mapping class group for Riemann surfaces of infinite type, J. Math. Soc. Japan, to appear.
 5.
 F. P. Gardiner, Teichmüller theory and quadratic differentials, WileyInterscience, New York, 1987. MR 88m:32044
 6.
 F. Hausdorff, Set Theory, Third Edition, Chelsea Publishing Company, New York, 1978.
 7.
 Y. Imayoshi and M. Taniguchi, Introduction to Teichmüller Spaces, SpringerTokyo 1992. MR 94b:32031
 8.
 J. P. Matelski, A compactness theorem for Fuchsian groups of the second kind, Duke Math. J. 43 (1976), 829840. MR 55:5900
 9.
 K. Matsuzaki and M. Taniguchi, Hyperbolic Manifolds and Kleinian Groups, Oxford Science Publications, 1998. MR 99g:30055
 10.
 S. Nag, The Complex Analytic Theory of Teichmüller Spaces, John Wiley & Sons, 1988. MR 89f:32040
 11.
 M. Tsuji, Potential Theory in Modern Function Theory, Chelsea, New York, 1959.
 12.
 S. A. Wolpert, The length spectra as moduli for compact Riemann surfaces, Ann. Math. 109 (1979), 323351. MR 80j:58067
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC (2000):
30F60,
30C62
Retrieve articles in all journals
with MSC (2000):
30F60,
30C62
Additional Information
Ege Fujikawa
Affiliation:
Department of Mathematics, Tokyo Institute of Technology, Ohokayama Meguroku Tokyo 1528551, Japan
Email:
fujikawa@math.titech.ac.jp
DOI:
http://dx.doi.org/10.1090/S0002993903069880
PII:
S 00029939(03)069880
Keywords:
Infinite dimensional Teichm\"uller space,
Teichm\"uller modular groups,
hyperbolic geometry
Received by editor(s):
August 12, 2002
Published electronically:
February 28, 2003
Communicated by:
Juha M. Heinonen
Article copyright:
© Copyright 2003
American Mathematical Society
