Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Monoid of self-equivalences and free loop spaces

Authors: Yves Félix and Jean-Claude Thomas
Journal: Proc. Amer. Math. Soc. 132 (2004), 305-312
MSC (2000): Primary 55P35, 55P62, 55P10
Published electronically: May 28, 2003
MathSciNet review: 2021275
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $M$ be a simply-connected closed oriented $N$-dimensional manifold. We prove that for any field of coefficients $lk$there exists a natural homomorphism of commutative graded algebras $\Gamma : H_* (\Omega\, \mbox{aut}_1 M) \to \mathbb H_{*}(M^{S^1})$ where $\mathbb H_*(M^{S^1})= H_{* +N}(M^{S^1})$ is the loop algebra defined by Chas and Sullivan. As usual $\mbox{aut}_1 X$denotes the monoid of self-equivalences homotopic to the identity, and $\Omega X$ the space of based loops. When $lk $ is of characteristic zero, $\Gamma $ yields isomorphisms $ H^{n+N}_{(1)}(M^{S^1}) \stackrel{\cong}{\to} (\pi_n(\Omega \mbox{aut}_1 M) \otimes lk)^\vee $ where $\bigoplus _{l=1}^\infty H^n_{(l)}(M^{S^1})$ denotes the Hodge decomposition on $H^* (M ^{S^1})$.

References [Enhancements On Off] (What's this?)

  • 1. M. Chas and D. Sullivan, String topology, preprint math GT/9911159.
  • 2. R. Cohen and J. Jones, A homotopy theoretic realization of string topology, Math. Ann. 324 (2002) 773-798.
  • 3. R. Cohen, J. D.S. Jones and J. Yan, The loop homology of spheres and projective spaces, preprint, February 2002.
  • 4. Y. Félix and J.-C. Thomas, The monoid of self-homotopy equivalences of some homogeneous spaces, Expositiones Mathematicae 12 (1994) 305-321. MR 95i:55013
  • 5. Y. Félix, S. Halperin and J.-C. Thomas, Rational Homotopy Theory, Graduate Texts in Mathematics 205, Springer-Verlag (2000). MR 2002d:55014
  • 6. Y. Félix, J.-C. Thomas and M. Vigué-Poirrier, Structure of the loop homology of a compact manifold, preprint, March 2002.
  • 7. J.-B. Gatsinzi, The homotopy Lie algebra of classifying spaces, Journal of Pure and Applied Algebra 120 (1997) 281-289. MR 98g:55015
  • 8. M. Gerstenhaber and S. D. Schack, A Hodge type decomposition for commutative algebras, J. Pure Appl. Algebra 48 (1987) no. 3, 229-247. MR 88k:13011
  • 9. A. Haefliger, Rational homotopy of the space of sections of a nilpotent bundle, Trans. Amer. Math. Soc. 273 (1982), 609-620. MR 84a:55010
  • 10. J.D.S. Jones, Cyclic homology and equivariant homology, Invent. Math. 87 (1987), 403-423. MR 88f:18016
  • 11. J. Milnor and J.C. Moore, On the structure of Hopf algebras, Annals of Math. 81 (1965) 211-264. MR 30:4259
  • 12. D. Sullivan, Infinitesimal computations in topology, Publ. Math. IHES 47 (1978) 269-331. MR 58:31119
  • 13. D. Sullivan and M. Vigué, The homology theory of the closed geodesic problem, J. Differential Geom. 11 (1976) 633-634. MR 56:13269
  • 14. M. Vigué-Poirrier, Décompositions de l'homologie cyclique des algèbres différentielles graduées commutatives, $K$-Theory 4 (1991) 399-410. MR 92e:19004
  • 15. M. Vigué-Poirrier, Homotopie rationnelle et croissance du nombre de géodésiques fermées, Ann. Scient. Ecole Norm. Sup. 17 (1984) 413-431. MR 86h:58027

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 55P35, 55P62, 55P10

Retrieve articles in all journals with MSC (2000): 55P35, 55P62, 55P10

Additional Information

Yves Félix
Affiliation: Département de Mathématique, Université Catholique de Louvain, 2, Chemin du Cyclotron, 1348 Louvain-La-Neuve, Belgium

Jean-Claude Thomas
Affiliation: Faculté des Sciences, Université d’Angers, 2, Boulevard Lavoisier, 49045 Angers, France

Received by editor(s): May 5, 2002
Received by editor(s) in revised form: August 30, 2002
Published electronically: May 28, 2003
Communicated by: Paul Goerss
Article copyright: © Copyright 2003 American Mathematical Society

American Mathematical Society