Asymptotically flat and scalar flat metrics on admitting a horizon

Author:
Pengzi Miao

Journal:
Proc. Amer. Math. Soc. **132** (2004), 217-222

MSC (2000):
Primary 53C80; Secondary 83C99

DOI:
https://doi.org/10.1090/S0002-9939-03-07029-1

Published electronically:
May 9, 2003

MathSciNet review:
2021265

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We give a new construction of asymptotically flat and scalar flat metrics on with a stable minimal sphere. The existence of such a metric gives an affirmative answer to a question raised by R. Bartnik (1989).

**1.**Robert Bartnik,*The mass of an asymptotically flat manifold*, Comm. Pure Appl. Math.**39**(1986), no. 5, 661-693. MR**88b:58144****2.**-,*New definition of quasilocal mass*, Phys. Rev. Lett.**62**(1989), no. 20, 2346-2348. MR**90e:83041****3.**-,*Some open problems in mathematical relativity*, Conference on Mathematical Relativity (Canberra, 1988), Austral. Nat. Univ., Canberra, 1989, pp. 244-268. MR**90g:83001****4.**R. Beig and N. Ó Murchadha,*Trapped surfaces due to concentration of gravitational radiation*, Phys. Rev. Lett.**66**(1991), no. 19, 2421-2424. MR**92a:83005****5.**Hubert Bray,*The penrose inequality in general relativity and volume comparison theorems involving scalar curvature*, Thesis, Stanford University (1997).**6.**Justin Corvino,*Scalar curvature deformation and a gluing construction for the Einstein constraint equations*, Comm. Math. Phys.**214**(2000), no. 1, 137-189. MR**2002b:53050****7.**David Gilbarg and Neil S. Trudinger,*Elliptic partial differential equations of second order*, Berlin: Springer-Verlag, 1983. MR**86c:35035****8.**Joachim Lohkamp,*Scalar curvature and hammocks*, Math. Ann.**313**(1999), no. 3, 385-407. MR**2000a:53059****9.**Richard Schoen,*Variational theory for the total scalar curvature functional for Riemannian metrics and related topics*, Topics in the Calculus of Variations, Lecture Notes in Math. 1365, Berlin: Springer-Verlag, 1987, pp. 120-154. MR**90g:58023****10.**Richard Schoen and Shing Tung Yau,*On the proof of the positive mass conjecture in general relativity*, Comm. Math. Phys.**65**(1979), no. 1, 45-76. MR**80j:83024**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
53C80,
83C99

Retrieve articles in all journals with MSC (2000): 53C80, 83C99

Additional Information

**Pengzi Miao**

Affiliation:
Department of Mathematics, Stanford University, Palo Alto, California 94305

Email:
mpengzi@math.stanford.edu

DOI:
https://doi.org/10.1090/S0002-9939-03-07029-1

Keywords:
Scalar flat metrics,
horizon

Received by editor(s):
May 2, 2002

Received by editor(s) in revised form:
August 23, 2002

Published electronically:
May 9, 2003

Communicated by:
Bennett Chow

Article copyright:
© Copyright 2003
American Mathematical Society