Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Almost constrained subspaces of Banach spaces


Authors: Pradipta Bandyopadhyay and S. Dutta
Journal: Proc. Amer. Math. Soc. 132 (2004), 107-115
MSC (2000): Primary 46B20
DOI: https://doi.org/10.1090/S0002-9939-03-07146-6
Published electronically: July 14, 2003
MathSciNet review: 2021253
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we obtain some sufficient conditions for an almost constrained subspace to be constrained (in fact, by a unique norm 1 projection), which improves significantly upon all existing conditions of similar type with significantly simpler proofs.


References [Enhancements On Off] (What's this?)

  • 1. P. Bandyopadhayay, S. Basu, S. Dutta and B. L. Lin, Very nonconstrained subspaces of Banach spaces, Preprint 2002 (submitted).
  • 2. Pradipta Bandyopadhyay and T. S. S. R. K. Rao, Central subspaces of Banach spaces, J. Approx. Theory, 103 (2000), 206-222. MR 2001b:46022
  • 3. B. Beuzamy and B. Maurey, Points minimaux et ensembles optimaux dans les espaces de Banach, J. Functional Analysis, 24 (1977), 107-139. MR 55:1044
  • 4. J. Diestel and J. J. Uhl, Jr., Vector measures, Mathematical Surveys, No. 15, Amer. Math. Soc., Providence, R. I. (1977). MR 56:12216
  • 5. S. R. Foguel, On a Theorem by A. E. Taylor, Proc. Amer. Math. Soc., 9 (1958), 325. MR 20:219
  • 6. G. Godefroy, Existence and uniqueness of isometric preduals: a survey, Banach space theory (Iowa City, IA, 1987), 131-193, Contemp. Math., 85, Amer. Math. Soc., Providence, RI, 1989. MR 90b:46035
  • 7. G. Godefroy and N. J. Kalton, The ball topology and its applications, Banach space theory (Iowa City, IA, 1987), 195-237, Contemp. Math., 85, Amer. Math. Soc., Providence, RI, 1989. MR 90c:46022
  • 8. G. Godini, On minimal points, Comment. Math. Univ. Carolina, 21 (1980), 407-419. MR 81j:46023
  • 9. P. Harmand, D. Werner and W. Werner, $M$-ideals in Banach spaces and Banach algebras, Lecture Notes in Mathematics, 1547, Springer-Verlag, Berlin, 1993. MR 94k:46022
  • 10. H. E. Lacey, Isometric theory of classical Banach spaces, Die Grundlehren der mathematischen Wissenschaften, Band 208, Springer-Verlag, New York-Heidelberg, 1974. MR 58:12308
  • 11. J. Lindenstrauss, On projections with norm 1--an example, Proc. Amer. Math. Soc., 15 (1964), 403-406. MR 28:4335
  • 12. J. Lindenstrauss, Extension of compact operators, Mem. Amer. Math. Soc., No. 48, 1964. MR 31:3828
  • 13. T. S. S. R. K. Rao, Intersection properties of balls in tensor products of some Banach spaces, II, Indian J. Pure Appl. Math., 21 (1990), 275-284. MR 91g:46020
  • 14. G. F. Simmons, Introduction to topology and modern analysis, McGraw-Hill Book Co., Inc., New York-San Francisco, Calif.-Toronto-London (1963). MR 26:4145
  • 15. A. E. Taylor, The extension of linear functionals, Duke Math. J., 5 (1939), 538-547. MR 1:58b
  • 16. D. E. Wulbert, Some complemented function spaces in $C(X)$, Pacific J. Math., 24 (1968), 589-602. MR 36:6915

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 46B20

Retrieve articles in all journals with MSC (2000): 46B20


Additional Information

Pradipta Bandyopadhyay
Affiliation: Statistics and Mathematics Division, Indian Statistical Institute, 203, B. T. Road, Kolkata 700 108, India
Email: pradipta@isical.ac.in

S. Dutta
Affiliation: Statistics and Mathematics Division, Indian Statistical Institute, 203, B. T. Road, Kolkata 700 108, India
Email: sudipta_r@isical.ac.in

DOI: https://doi.org/10.1090/S0002-9939-03-07146-6
Keywords: Finite-infinite intersection property ($IP_{f, \iy}$), almost constrained ($AC$) subspace, (weakly) Hahn-Banach smooth, (weakly) $U$-subspace.
Received by editor(s): August 9, 2002
Published electronically: July 14, 2003
Additional Notes: This work was partially supported by IFCPAR grant no. 2601-1.
Communicated by: Jonathan M. Borwein
Article copyright: © Copyright 2003 American Mathematical Society

American Mathematical Society