Asymptotic factorial powers expansions for binomial and negative binomial reciprocals

Author:
Grzegorz A. Rempala

Journal:
Proc. Amer. Math. Soc. **132** (2004), 261-272

MSC (2000):
Primary 60E05, 62E20; Secondary 11B15, 05A16

DOI:
https://doi.org/10.1090/S0002-9939-03-07254-X

Published electronically:
August 13, 2003

MathSciNet review:
2021270

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: By considering the variance formula for a shifted reciprocal of a binomial proportion, the asymptotic expansions of any order for first negative moments of binomial and negative binomial distributions truncated at zero are obtained. The expansions are given in terms of the factorial powers of the number of trials . The obtained formulae are more accurate than those of Marciniak and Wesoowski (1999) and simpler, as they do not involve the Eulerian polynomials.

**1.**R. R. Bahadur (1960).

Some approximations to the binomial distribution function.*Ann. Math. Statist.*, 31:43-54. MR**22:11424****2.**W. G. Cochran (1977).*Sampling Techniques*.

Wiley Series in Probablity and Mathematical Statistics, John Wiley and Sons, New York. MR**57:14212****3.**F. N. David and N. L. Johnson (1956-1957).

Reciprocal Bernoulli and Poisson variables.*Metron*18: 77-81. MR**18:520g****4.**E. W. Frees (1989).

Infinite order -statistics.*Scand. J. Statist.*, 16(1):29-45. MR**90h:62047****5.**R. L. Graham, D. E. Knuth and O. Patashnik (1994).*Concrete Mathematics*.

Addison-Wesley Publishing Company, Reading, MA, second edition. MR**97d:68003****6.**M. C. Jones (1987).

Inverse factorial moments.*Statistics and Probability Letters*6: 37-42. MR**90e:62025a****7.**E. Marciniak and J. Wesoowski (1999).

Asymptotic Eulerian expansions for binomial and negative binomial reciprocals.*Proc. Amer. Math. Soc.*, 127(11):3329-3338. MR**2000b:60033****8.**G. Rempala and G. Székely (1998).

On estimation with elementary symmetric polynomials.*Random Oper. Stochastic Equations*, 6(1):77-88. MR**99e:62025****9.**E. B. Rockower (1988).

Integral identities for random variables.*American Statistician*42: 68-72. MR**89a:60041****10.**R. J. Serfling (1980).*Approximation Theorems of Mathematical Statistics*.

Wiley Series in Probability and Mathematical Statistics, John Wiley and Sons, New York. MR**82a:62003**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
60E05,
62E20,
11B15,
05A16

Retrieve articles in all journals with MSC (2000): 60E05, 62E20, 11B15, 05A16

Additional Information

**Grzegorz A. Rempala**

Affiliation:
Department of Mathematics, University of Louisville, Louisville, Kentucky 40292

Email:
grzes@louisville.edu

DOI:
https://doi.org/10.1090/S0002-9939-03-07254-X

Keywords:
Factorial power,
asymptotic expansions,
indirect estimator,
inverse moments,
elementary symmetric polynomial,
positive binomial distribution,
truncated negative binomial distribution

Received by editor(s):
March 1, 2001

Received by editor(s) in revised form:
August 1, 2002

Published electronically:
August 13, 2003

Dedicated:
To my parents

Communicated by:
Richard A. Davis

Article copyright:
© Copyright 2003
American Mathematical Society