Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Marcinkiewicz's theorem on operator multipliers of Fourier series

Author: Milutin R. Dostanic
Journal: Proc. Amer. Math. Soc. 132 (2004), 391-396
MSC (2000): Primary 42B15
Published electronically: June 11, 2003
MathSciNet review: 2022361
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We give some sufficient conditions on the operators $A_{m}\in\mathcal{B} \left( L^{p}\left( 0,1\right) \right) $ which for each $\Phi_{m}\in L^{p}\left( 0,1\right) $ imply the inequality

\begin{displaymath}\int\limits_{0}^{1}\int\limits_{0}^{2\pi}\left\vert \sum\limi... ..._{m}e^{imx}\cdot \Phi_{m}\left( y\right) \right\vert ^{p}dxdy, \end{displaymath}


References [Enhancements On Off] (What's this?)

  • 1. J. B. Garnett, ``Bounded analytic functions'', Pure and Applied Mathematics, vol. 96, Academic Press, 1981. MR 83g:30037
  • 2. G. H. Hardy, J. E. Littlewood, and G. Polya, ``Inequalities'', 2$^{nd.}$ ed., Cambridge University Press, Cambridge, UK, 1952. MR 13:727e
  • 3. R. Schatten, ``A Theory of cross-spaces'', Ann. Math. Studies, $\mathcal{N}^{o} 26,1950.$ MR 12:186e
  • 4. A. Zygmund, ``Trigonometric Series'', Izdatelstvo ``Mir'', Moscow, 1965. MR 31:2554

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 42B15

Retrieve articles in all journals with MSC (2000): 42B15

Additional Information

Milutin R. Dostanic
Affiliation: Matematicki Fakultet, University of Belgrade, Studentski Trg 16, 11000 Belgrade, Serbia

Keywords: Marcinkiewicz's theorem, multipliers
Received by editor(s): July 19, 2001
Received by editor(s) in revised form: September 20, 2002
Published electronically: June 11, 2003
Communicated by: Joseph A. Ball
Article copyright: © Copyright 2003 American Mathematical Society

American Mathematical Society