Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The Lusternik-Schnirelmann category of $\operatorname{Sp}(3)$


Authors: Lucía Fernández-Suárez, Antonio Gómez-Tato, Jeffrey Strom and Daniel Tanré
Journal: Proc. Amer. Math. Soc. 132 (2004), 587-595
MSC (2000): Primary 55M30; Secondary 22E20
DOI: https://doi.org/10.1090/S0002-9939-03-07019-9
Published electronically: June 12, 2003
MathSciNet review: 2022385
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We show that the Lusternik-Schnirelmann category of the symplectic group $\operatorname{Sp}(3)$ is $5$. This L-S category coincides with the cone length and the stable weak category.


References [Enhancements On Off] (What's this?)

  • 1. W. Browder and E. Spanier, H-Spaces and duality, Pacific J. Math. 12 (1962), 411-414. MR 26:1891
  • 2. O. Cornea, There is just one rational cone length, Trans. Amer. Math. Soc. 344 (1994), 835-848. MR 95b:55009
  • 3. L. Fernández-Suárez, A. Gómez-Tato and D. Tanré, Hopf-Ganea invariants and weak LS category. Topology Appl. 115 (2001), 305-316. MR 2002g:55023
  • 4. R. Fox, On the Lusternik-Schnirelmann category, Ann. of Math. 42 (1941), 333-370. MR 2:320f
  • 5. T. Ganea, Lusternik-Schnirelmann category and strong category, Illinois J. Math. 11 (1967), 417-427. MR 37:4814
  • 6. T. Ganea, Some problems on numerical homotopy invariants, Symp. Algebraic Topology, Lecture Notes in Math., no. 249, Springer-Verlag (1971), 249, 23-30. MR 49:3910
  • 7. N. Iwase, Ganea's conjecture on Lusternik-Schnirelmann category, Bull. London Math. Soc. 30 (1998), 623-634. MR 99j:55003
  • 8. N. Iwase, $A_{\infty}$-method in Lusternik-Schnirelmann category, Topology 41 (2002), 695-723.
  • 9. I. M. James, On category, in the sense of Lusternik and Schnirelmann, Topology 17 (1963), 331-348. MR 80i:55001
  • 10. I. M. James and W. Singhof, On the category of fiber bundles, Lie groups, and Frobenius maps, Contemporary Math. 227 (1999), 177-189. MR 2000a:55007
  • 11. P. Lambrechts, D. Stanley and L. Vandembroucq, Embeddings up to homotopy of two-cones in Euclidean space, Trans. Amer. Math. Soc. 354 (2002), 3973-4013.
  • 12. F. Laudenbach and J.-C. Sikorav, Persistance de l'intersection avec la section nulle au cours d'une isotopie hamiltonienne dans un fibré cotangent, Invent. Math. 82 (1985), 349-357. MR 87c:58042
  • 13. L. Lusternik and L. Schnirelmann, Méthodes topologiques dans les problèmes variationnels, Hermann, Paris, 1934.
  • 14. H. Marcum, Fibrations over double mapping cylinders, Illinois J. Math. 24 (1980), 344-358. MR 81j:55011
  • 15. P.-M. Moyaux and L. Vandembroucq, Lagrangian intersections in cotangent bundles, Preprint (2002).
  • 16. Y. Rudyak, On category weight and its applications, Topology 38 (1999), 37-56. MR 99f:55007
  • 17. H. Scheerer, D. Stanley and D. Tanré, Fibrewise construction applied to Lusternik-Schnirelmann category, Israel J. of Math. 131 (2002), 333-359.
  • 18. P. A. Schweitzer, Secondary cohomology operations induced by the diagonal mapping, Topology 3 (1965), 337-355. MR 32:451
  • 19. W. Singhof, On the Lusternik-Schnirelmann category of Lie groups, Math Zeitschrift 145 (1975), 111-116. MR 52:11897
  • 20. W. Singhof, On the Lusternik-Schnirelmann category of Lie groups II, Math Zeitschrift 151 (1976), 143-148. MR 54:13902
  • 21. J. Strom, Decomposition of the diagonal map. Topology 42 (2003), 349-364.
  • 22. J. Strom, Essential category weight and Phantom maps, In: Cohomological methods in homotopy theory, Progress in Mathematics 196, Birkhäuser, Basel, Boston, Berlin, 2001. MR 2002f:55018
  • 23. F. Takens, The minimal number of critical points of a function on a compact manifold and the Lusternik-Schnirelmann category, Invent. Math. 6 (1968), 197-244. MR 38:5235
  • 24. H. Toda, Composition Methods in the Homotopy Groups of Spheres, Princeton Math Series 49, Princeton Universtity Press, 1962. MR 26:777
  • 25. L. Vandembroucq, Fiberwise suspension and Lusternik-Schnirelmann category, Topology 41 (2002), 1239-1258.
  • 26. G. W. Whitehead, Elements of Homotopy Theory, Graduate Texts in Mathematics 61, Springer-Verlag, 1978. MR 80b:55001

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 55M30, 22E20

Retrieve articles in all journals with MSC (2000): 55M30, 22E20


Additional Information

Lucía Fernández-Suárez
Affiliation: Centro de Matemática (CMAT), Universidade do Minho (Gualtar), 4710 Braga, Portugal
Email: lfernandez@math.uminho.pt

Antonio Gómez-Tato
Affiliation: Departamento de Xeometría e Topoloxía, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, España
Email: agtato@usc.es

Jeffrey Strom
Affiliation: Department of Mathematics, Western Michigan University, 1903 W. Michigan Ave., Kalamazoo, Michigan 49008
Email: jeffrey.strom@wmich.edu

Daniel Tanré
Affiliation: Département de Mathématiques, UMR 8524, Université de Lille 1, 59655 Villeneuve d’Ascq Cedex, France
Email: Daniel.Tanre@agat.univ-lille1.fr

DOI: https://doi.org/10.1090/S0002-9939-03-07019-9
Keywords: Lusternik-Schnirelmann category, Lie group
Received by editor(s): March 20, 2002
Received by editor(s) in revised form: September 10, 2002
Published electronically: June 12, 2003
Additional Notes: The first and second authors were partially supported by the MCT Research project BFM2000-0345
Communicated by: Paul Goerss
Article copyright: © Copyright 2003 American Mathematical Society

American Mathematical Society