An existence theorem of harmonic functions with polynomial growth

Author:
Yu Ding

Journal:
Proc. Amer. Math. Soc. **132** (2004), 543-551

MSC (2000):
Primary 53C21, 53C23

Published electronically:
June 12, 2003

MathSciNet review:
2022380

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We prove the existence of nonconstant harmonic functions with polynomial growth on manifolds with nonnegative Ricci curvature, Euclidean volume growth and unique tangent cone at infinity.

**1.**Frederick J. Almgren Jr.,*Dirichlet’s problem for multiple valued functions and the regularity of mass minimizing integral currents*, Minimal submanifolds and geodesics (Proc. Japan-United States Sem., Tokyo, 1977) North-Holland, Amsterdam-New York, 1979, pp. 1–6. MR**574247****2.**Jeff Cheeger,*Spectral geometry of singular Riemannian spaces*, J. Differential Geom.**18**(1983), no. 4, 575–657 (1984). MR**730920****3.**J. Cheeger,*Differentiability of Lipschitz functions on metric measure spaces*, Geom. Funct. Anal.**9**(1999), no. 3, 428–517. MR**1708448**, 10.1007/s000390050094**4.**Jeff Cheeger and Tobias H. Colding,*Lower bounds on Ricci curvature and the almost rigidity of warped products*, Ann. of Math. (2)**144**(1996), no. 1, 189–237. MR**1405949**, 10.2307/2118589**5.**Jeff Cheeger and Tobias H. Colding,*On the structure of spaces with Ricci curvature bounded below. I*, J. Differential Geom.**46**(1997), no. 3, 406–480. MR**1484888****6.**Jeff Cheeger and Tobias H. Colding,*On the structure of spaces with Ricci curvature bounded below. III*, J. Differential Geom.**54**(2000), no. 1, 37–74. MR**1815411****7.**J. Cheeger, T. H. Colding, and W. P. Minicozzi II,*Linear growth harmonic functions on complete manifolds with nonnegative Ricci curvature*, Geom. Funct. Anal.**5**(1995), no. 6, 948–954. MR**1361516**, 10.1007/BF01902216**8.**Jeff Cheeger and Michael Taylor,*On the diffraction of waves by conical singularities. I*, Comm. Pure Appl. Math.**35**(1982), no. 3, 275–331. MR**649347**, 10.1002/cpa.3160350302**9.**Jeff Cheeger and Gang Tian,*On the cone structure at infinity of Ricci flat manifolds with Euclidean volume growth and quadratic curvature decay*, Invent. Math.**118**(1994), no. 3, 493–571. MR**1296356**, 10.1007/BF01231543**10.**Tobias H. Colding and William P. Minicozzi II,*Harmonic functions with polynomial growth*, J. Differential Geom.**46**(1997), no. 1, 1–77. MR**1472893****11.**Tobias H. Colding and William P. Minicozzi II,*Harmonic functions on manifolds*, Ann. of Math. (2)**146**(1997), no. 3, 725–747. MR**1491451**, 10.2307/2952459**12.**Tobias H. Colding and William P. Minicozzi II,*Liouville theorems for harmonic sections and applications*, Comm. Pure Appl. Math.**51**(1998), no. 2, 113–138. MR**1488297**, 10.1002/(SICI)1097-0312(199802)51:2<113::AID-CPA1>3.0.CO;2-E**13.**Y. Ding,*Heat kernels and Green's functions on limit spaces.*Comm. Anal. Geom. 10 (2002), no. 3, 475-514.**14.**Y. Ding,*The gradient of certain harmonic functions on manifolds of almost nonnegative Ricci curvature.*Israel J. Math. 129 (2002), 241-251.**15.**David Gilbarg and Neil S. Trudinger,*Elliptic partial differential equations of second order*, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 224, Springer-Verlag, Berlin, 1983. MR**737190****16.**Peter Li,*Harmonic sections of polynomial growth*, Math. Res. Lett.**4**(1997), no. 1, 35–44. MR**1432808**, 10.4310/MRL.1997.v4.n1.a4**17.**Fang Hua Lin,*Asymptotically conic elliptic operators and Liouville type theorems*, Geometric analysis and the calculus of variations, Int. Press, Cambridge, MA, 1996, pp. 217–238. MR**1449409****18.**X. Menguy,*Noncollapsing examples with positive Ricci curvature and infinite topological type*, Geom. Funct. Anal.**10**(2000), no. 3, 600–627. MR**1779615**, 10.1007/PL00001632**19.**G. Perelman,*A complete Riemannian manifold of positive Ricci curvature with Euclidean volume growth and nonunique asymptotic cone*, Comparison geometry (Berkeley, CA, 1993–94) Math. Sci. Res. Inst. Publ., vol. 30, Cambridge Univ. Press, Cambridge, 1997, pp. 165–166. MR**1452873****20.**Christina Sormani,*Harmonic functions on manifolds with nonnegative Ricci curvature and linear volume growth*, Pacific J. Math.**192**(2000), no. 1, 183–189. MR**1741022**, 10.2140/pjm.2000.192.183**21.**R. Schoen and S.-T. Yau,*Lectures on differential geometry*, Conference Proceedings and Lecture Notes in Geometry and Topology, I, International Press, Cambridge, MA, 1994. Lecture notes prepared by Wei Yue Ding, Kung Ching Chang [Gong Qing Zhang], Jia Qing Zhong and Yi Chao Xu; Translated from the Chinese by Ding and S. Y. Cheng; Preface translated from the Chinese by Kaising Tso. MR**1333601****22.**Zhang Liqun,*On the generic eigenvalue flow of a family of metrics and its application*, Comm. Anal. Geom.**7**(1999), no. 2, 259–278. MR**1685606**, 10.4310/CAG.1999.v7.n2.a2

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
53C21,
53C23

Retrieve articles in all journals with MSC (2000): 53C21, 53C23

Additional Information

**Yu Ding**

Affiliation:
Department of Mathematics, University of California, Irvine, California 92697

Email:
yding@math.uci.edu

DOI:
https://doi.org/10.1090/S0002-9939-03-07060-6

Received by editor(s):
September 11, 2002

Received by editor(s) in revised form:
October 8, 2002

Published electronically:
June 12, 2003

Communicated by:
Richard A. Wentworth

Article copyright:
© Copyright 2003
American Mathematical Society