Maximal operators on spaces of homogeneous type

Authors:
Gladis Pradolini and Oscar Salinas

Journal:
Proc. Amer. Math. Soc. **132** (2004), 435-441

MSC (2000):
Primary 42B25

DOI:
https://doi.org/10.1090/S0002-9939-03-07079-5

Published electronically:
June 30, 2003

MathSciNet review:
2022366

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We avoid the assumption given in the work of C. Pérez and R. Wheeden (2001) to prove boundedness properties of certain maximal functions in a general setting of the spaces of homogeneous type with infinite measure. In addition, an example shows that the result can be false if the space has finite measure.

**[A]**Aimar, H.:*``Singular integrals and approximate identities on spaces of homogeneous type"*, Trans. Amer. Math. Soc., Vol. 292, No.1 (1985), pp. 135-153 MR**86m:42022****[BS]**Bernardis, A. and Salinas, O.:*``Two-weighted inequalities for certain maximal fractional operators on spaces of homogeneous type"*, Revista de la Unión Matemática Argentina, Vol. 41, 3, (1999) MR**2001e:42024****[CP1]**Cruz-Uribe, D. and Pérez, C.:*``Two weight extrapolation via the maximal operator"*, J. Funct. Anal. 174 (2000), no. 1, 1-17. MR**2001g:42040****[CP2]**Cruz-Uribe, D. and Pérez, C.:*``Sharp two-weight, weak-type norm inequalities for singular integral operators"*, Math. Res. Lett. 6 (1999), pp. 417-428 MR**2000k:42020****[MS]**Macías, R. and Segovia, C.:*``Lipschitz functions on spaces of homogeneous type"*, Advances in Math. 33 (1979) pp. 257-270 MR**81c:32017a****[MST]**Macías, R., Segovia, C. and Torrea, J.:*``Singular integral operators with non-necessarily bounded kernels on spaces of homogeneous type"*, Advances in Math., Vol. 93, No. 1 (1992) MR**93h:42018****[P1]**Pérez, C.:*``On sufficient conditions for the boundedness of the Hardy-Littlewood maximal operator between weighted**-spaces with different weights"*, Proc. London Math. Soc. (3) 71, 1995, pp. 135-157 MR**96k:42023****[P2]**Pérez, C.:*``Sharp estimates for commutators of singular integrals via iterations of the Hardy-Littlewood maximal function"*, Journal of Fourier Analysis and Applications, Vol. 3, No. 6, 1997, pp. 743-756 MR**99f:42042****[P3]**Pérez, C.:*``Sharp weighted inequalities for the vector-valued maximal function"*, Trans. Amer. Math. Soc., Vol. 352, No. 7 (2000), pp. 3265-3288 MR**2000j:42033****[P4]**Pérez, C.:*``Two weighted inequalities for potential and fractional type maximal operators"*, Indiana Univ. Math. J. 43, 1994, pp. 663-683 MR**95m:42028****[PW]**Pérez, C. and Wheeden, R.:*``Uncertainty principle estimates for vector fields"*, Journal of Functional Analysis, 181, 2001, pp. 146-188 MR**2002h:42035****[RR]**Rao, M. and Ren, Z.:*``Theory of Orlicz spaces"*, Marcel Dekker, Inc., New York, 1991 MR**92e:46059**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
42B25

Retrieve articles in all journals with MSC (2000): 42B25

Additional Information

**Gladis Pradolini**

Affiliation:
Department of Mathematics, Universidad Nacional del Litoral, Instituto de Mate- mática Aplicada del Litoral (IMAL), Güemes 3450, 3000 Santa Fe, Argentina

Email:
gprado@math.unl.edu.ar

**Oscar Salinas**

Affiliation:
Department of Mathematics, Universidad Nacional del Litoral, Instituto de Mate- mática Aplicada del Litoral (IMAL), Güemes 3450, 3000 Santa Fe, Argentina

Email:
salinas@ceride.gov.ar

DOI:
https://doi.org/10.1090/S0002-9939-03-07079-5

Keywords:
Maximal operator,
spaces of homogeneous type

Received by editor(s):
July 29, 2002

Received by editor(s) in revised form:
September 30, 2002

Published electronically:
June 30, 2003

Additional Notes:
The authors were supported by Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina and Universidad Nacional del Litoral

Communicated by:
Andreas Seeger

Article copyright:
© Copyright 2003
American Mathematical Society