Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Maximal operators on spaces of homogeneous type


Authors: Gladis Pradolini and Oscar Salinas
Journal: Proc. Amer. Math. Soc. 132 (2004), 435-441
MSC (2000): Primary 42B25
DOI: https://doi.org/10.1090/S0002-9939-03-07079-5
Published electronically: June 30, 2003
MathSciNet review: 2022366
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We avoid the assumption given in the work of C. Pérez and R. Wheeden (2001) to prove boundedness properties of certain maximal functions in a general setting of the spaces of homogeneous type with infinite measure. In addition, an example shows that the result can be false if the space has finite measure.


References [Enhancements On Off] (What's this?)

  • [A] Aimar, H.:``Singular integrals and approximate identities on spaces of homogeneous type", Trans. Amer. Math. Soc., Vol. 292, No.1 (1985), pp. 135-153 MR 86m:42022
  • [BS] Bernardis, A. and Salinas, O.:``Two-weighted inequalities for certain maximal fractional operators on spaces of homogeneous type", Revista de la Unión Matemática Argentina, Vol. 41, 3, (1999) MR 2001e:42024
  • [CP1] Cruz-Uribe, D. and Pérez, C.:``Two weight extrapolation via the maximal operator", J. Funct. Anal. 174 (2000), no. 1, 1-17. MR 2001g:42040
  • [CP2] Cruz-Uribe, D. and Pérez, C.: ``Sharp two-weight, weak-type norm inequalities for singular integral operators", Math. Res. Lett. 6 (1999), pp. 417-428 MR 2000k:42020
  • [MS] Macías, R. and Segovia, C.:``Lipschitz functions on spaces of homogeneous type", Advances in Math. 33 (1979) pp. 257-270 MR 81c:32017a
  • [MST] Macías, R., Segovia, C. and Torrea, J.:``Singular integral operators with non-necessarily bounded kernels on spaces of homogeneous type", Advances in Math., Vol. 93, No. 1 (1992) MR 93h:42018
  • [P1] Pérez, C.: ``On sufficient conditions for the boundedness of the Hardy-Littlewood maximal operator between weighted $L^{p}$-spaces with different weights", Proc. London Math. Soc. (3) 71, 1995, pp. 135-157 MR 96k:42023
  • [P2] Pérez, C.: ``Sharp estimates for commutators of singular integrals via iterations of the Hardy-Littlewood maximal function", Journal of Fourier Analysis and Applications, Vol. 3, No. 6, 1997, pp. 743-756 MR 99f:42042
  • [P3] Pérez, C.: ``Sharp weighted inequalities for the vector-valued maximal function", Trans. Amer. Math. Soc., Vol. 352, No. 7 (2000), pp. 3265-3288 MR 2000j:42033
  • [P4] Pérez, C.: ``Two weighted inequalities for potential and fractional type maximal operators", Indiana Univ. Math. J. 43, 1994, pp. 663-683 MR 95m:42028
  • [PW] Pérez, C. and Wheeden, R.: ``Uncertainty principle estimates for vector fields", Journal of Functional Analysis, 181, 2001, pp. 146-188 MR 2002h:42035
  • [RR] Rao, M. and Ren, Z.: ``Theory of Orlicz spaces", Marcel Dekker, Inc., New York, 1991 MR 92e:46059

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 42B25

Retrieve articles in all journals with MSC (2000): 42B25


Additional Information

Gladis Pradolini
Affiliation: Department of Mathematics, Universidad Nacional del Litoral, Instituto de Mate- mática Aplicada del Litoral (IMAL), Güemes 3450, 3000 Santa Fe, Argentina
Email: gprado@math.unl.edu.ar

Oscar Salinas
Affiliation: Department of Mathematics, Universidad Nacional del Litoral, Instituto de Mate- mática Aplicada del Litoral (IMAL), Güemes 3450, 3000 Santa Fe, Argentina
Email: salinas@ceride.gov.ar

DOI: https://doi.org/10.1090/S0002-9939-03-07079-5
Keywords: Maximal operator, spaces of homogeneous type
Received by editor(s): July 29, 2002
Received by editor(s) in revised form: September 30, 2002
Published electronically: June 30, 2003
Additional Notes: The authors were supported by Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina and Universidad Nacional del Litoral
Communicated by: Andreas Seeger
Article copyright: © Copyright 2003 American Mathematical Society

American Mathematical Society