Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Eigenvalue estimates for operators on symmetric Banach sequence spaces


Authors: Andreas Defant, Mieczyslaw Mastylo and Carsten Michels
Journal: Proc. Amer. Math. Soc. 132 (2004), 513-521
MSC (2000): Primary 47B06; Secondary 47B10, 47B37
DOI: https://doi.org/10.1090/S0002-9939-03-07106-5
Published electronically: July 14, 2003
MathSciNet review: 2022377
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Using abstract interpolation theory, we study eigenvalue distribution problems for operators on complex symmetric Banach sequence spaces. More precisely, extending two well-known results due to König on the asymptotic eigenvalue distribution of operators on $\ell_p$-spaces, we prove an eigenvalue estimate for Riesz operators on $\ell_p$-spaces with $1 < p < 2$, which take values in a $p$-concave symmetric Banach sequence space $E \hookrightarrow \ell_p$, as well as a dual version, and show that each operator $T$ on a $2$-convex symmetric Banach sequence space $F$, which takes values in a $2$-concave symmetric Banach sequence space $E$, is a Riesz operator with a sequence of eigenvalues that forms a multiplier from $F$ into $E$. Examples are presented which among others show that the concavity and convexity assumptions are essential.


References [Enhancements On Off] (What's this?)

  • [1] J. Bergh and J. Löfström, Interpolation spaces, Springer-Verlag, 1978. MR 58:2349
  • [2] A. Defant, Variants of the Maurey-Rosenthal theorem for quasi Köthe function spaces, Positivity 5 (2001), 153-175. MR 2002a:46031
  • [3] A. Defant and K. Floret, Tensor norms and operator ideals, North-Holland, 1993. MR 94e:46130
  • [4] A. Defant, M. Masty\lo and C. Michels, Summing inclusion maps between symmetric sequence spaces, a survey, Recent progress in functional analysis (Valencia, 2000), 43-60, North-Holland Math. Stud., 189, North-Holland, Amsterdam, 2001. MR 2002h:47027
  • [5] -, Summing inclusion maps between symmetric sequence spaces, Trans. Amer. Math. Soc. 354 (2002), 4473-4492.
  • [6] -, Orlicz norm estimates for eigenvalues of matrices, Israel J. Math. 132 (2002), 45-59.
  • [7] J. Diestel, H. Jarchow, and A. Tonge, Absolutely summing operators, Cambridge Univ. Press, 1995. MR 96i:46001
  • [8] F. L. Hernández and B. Rodriguez-Salinas, On $\ell^p$-complemented copies in Orlicz spaces II, Israel J. Math. 68 (1989), 27-55. MR 91c:46041
  • [9] N. J. Kalton, Orlicz sequence spaces without local convexity, Math. Proc. Cambridge Philos. Soc. 81 (1977), 253-277. MR 55:6173
  • [10] H. König, Eigenvalue distributions of compact operators, Birkhäuser, 1986. MR 88j:47021
  • [11] -, Eigenvalues of operators and applications, Handbook of the geometry of Banach spaces, Vol. I, 941-974, North-Holland, Amsterdam, 2001.
  • [12] S. Kwapien, Some remarks on $(p,q)$-absolutely summing operators in $\ell_p$-spaces, Studia Math. 29 (1968), 327-337. MR 37:6767
  • [13] J. Lindenstrauss and L. Tzafriri, Classical Banach spaces I: Sequence spaces, Springer-Verlag, 1977. MR 58:17766
  • [14] -, Classical Banach spaces II: Function spaces, Springer-Verlag, 1979. MR 81c:46001
  • [15] F. Lust-Piquard and G. Pisier, Noncommutative Khintchine and Paley inequalities, Arkiv för Mat. 29 (1991), 241-260. MR 94b:46011
  • [16] A. Pietsch, Eigenvalues and $s$-numbers, Cambridge University Press, 1987.MR 88j:47022b
  • [17] G. Pisier, Factorization of linear operators and geometry of Banach spaces, CBMS Regional Conference Series in Mathematics 60, Providence, RI, 1986. MR 88a:47020
  • [18] N. Tomczak-Jaegermann, Banach-Mazur distances and finite-dimensional operator ideals, Longman Scientific & Technical, 1989.MR 90k:46039

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 47B06, 47B10, 47B37

Retrieve articles in all journals with MSC (2000): 47B06, 47B10, 47B37


Additional Information

Andreas Defant
Affiliation: FK 5, Inst. F. Mathematik, Carl von Ossietzky University of Oldenburg, Postfach 2503, D-26111 Oldenburg, Germany
Email: defant@mathematik.uni-oldenburg.de

Mieczyslaw Mastylo
Affiliation: Faculty of Mathematics and Computer Science, A. Mickiewicz University, and Insti- tute of Mathematics, Polish Academy of Sciences (Poznań branch), Umultowska 87, Poznań 61-614, Poland
Email: mastylo@amu.edu.pl

Carsten Michels
Affiliation: FK 5, Inst. F. Mathematik, Carl von Ossietzky University of Oldenburg, Postfach 2503, D-26111 Oldenburg, Germany
Email: michels@mathematik.uni-oldenburg.de

DOI: https://doi.org/10.1090/S0002-9939-03-07106-5
Received by editor(s): April 12, 2002
Received by editor(s) in revised form: October 21, 2002
Published electronically: July 14, 2003
Additional Notes: The second-named author was supported by KBN Grant 2 P03A 042 18
Communicated by: N. Tomczak-Jaegermann
Article copyright: © Copyright 2003 American Mathematical Society

American Mathematical Society