Endomorphisms of stable continuous-trace -algebras

Author:
Ilan Hirshberg

Journal:
Proc. Amer. Math. Soc. **132** (2004), 481-486

MSC (2000):
Primary 46L05, 46M20

DOI:
https://doi.org/10.1090/S0002-9939-03-07115-6

Published electronically:
July 31, 2003

MathSciNet review:
2022372

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We classify -endomorphisms of stable continuous-trace -algebras up to inner automorphism by a surjective multiplicative invariant taking values in finite-dimensional vector bundles over the spectrum. Specializing to automorphisms, this gives a different approach to results of Lance, Smith, Phillips and Raeburn.

**[Di]**Dixmier, J.,*-algebras*, North Holland, 1977. MR**56:16388****[Do]**Dold, A., Partitions of unity in the theory of fibrations,*Ann. Math.*,**78**no. 2 (1963), 223-255. MR**27:5264****[K]**Karoubi, M.,*-theory*, Grundlehren der mathematischen Wissenschaften**226**, Springer-Verlag, 1978. MR**58:7605****[L]**Lance, E. C., Automorphisms of certain operator algebras,*Amer. J. Math.*,**91**(1969), 160-174. MR**39:3324****[PhR]**Phillips, J. and Raeburn, I., Automorphisms of -algebras and second Cech cohomology,*Indiana Univ. Math. J.***29**, no. 6 (1980), 799-822. MR**82b:46089****[Pr]**Price, G. L., Endomorphisms of certain operator algebras,*Publ. Res. Inst. Math. Sci.*,**25**(1989), 45-57. MR**90h:46104****[RW]**Raeburn, I. and Williams, D. P.,*Morita Equivalence and Continuous-Trace -algebras*, Mathematical Surveys and Monographs**60**, American Mathematical Society, Providence, RI, 1998. MR**2000c:46108****[Ro]**Rosenberg, J., Continuous-trace algebras from the bundle theoretic point of view,*J. Austral. Math. Soc. Ser. A***47**, no. 3 (1989), 368-381. MR**91d:46090****[S]**Smith, M.S.B., On automorphism groups of -algebras,*Trans. Amer. Math. Soc.*,**152**(1970), 623-648. MR**42:8305**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
46L05,
46M20

Retrieve articles in all journals with MSC (2000): 46L05, 46M20

Additional Information

**Ilan Hirshberg**

Affiliation:
Department of Mathematics, University of California at Berkeley, Berkeley, California 94720

Email:
ilan@math.berkeley.edu

DOI:
https://doi.org/10.1090/S0002-9939-03-07115-6

Received by editor(s):
February 1, 2002

Received by editor(s) in revised form:
October 10, 2002

Published electronically:
July 31, 2003

Communicated by:
David R. Larson

Article copyright:
© Copyright 2003
American Mathematical Society