Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Uniqueness of exceptional singular quartics


Author: Karen A. Chandler
Journal: Proc. Amer. Math. Soc. 132 (2004), 347-352
MSC (2000): Primary 14N10; Secondary 14C20
DOI: https://doi.org/10.1090/S0002-9939-03-07153-3
Published electronically: June 23, 2003
MathSciNet review: 2022355
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that given a general collection $\Gamma$ of 14 points of $\mathbb{P}^4=\mathbb{P}^4_\mathcal{K}$( $\mathcal{K}$ an infinite field) there is a unique quartic hypersurface that is singular on $\Gamma$.

This completes the solution to the open problem of the dimension of a linear system of hypersurfaces of $\mathbb{P}^n$ that are singular on a collection of general points.


References [Enhancements On Off] (What's this?)

  • [A] J. Alexander, Singularités imposables en position générale aux hypersurfaces de $\mathbb{P}^n$, Compositio Math. 68 (1988), 305-354. MR 89k:14085
  • [AH1] J. Alexander and A. Hirschowitz, Un lemme d'Horace différentiel: application aux singularités hyperquartiques de $\mathbb{P}^5$, J. Algebraic Geom. 1 (1992), no. 3, 411-426. MR 93e:14004
  • [AH2] J. Alexander and A. Hirschowitz, La méthode d'Horace éclatée: application à l'interpolation en degré quatre, Invent. Math. 107, 585-602 (1992). MR 93d:13017
  • [AH3] J. Alexander and A. Hirschowitz, Polynomial interpolation in several variables, J. Algebraic Geom. 4 (1995), no. 2, 201-222. MR 96f:14065
  • [Ch1] K. Chandler, Geometry of dots and ropes, Trans. Amer. Math. Soc. 347 (1995), no. 3, 767-784. MR 95f:14054
  • [Ch2] K. Chandler, A brief proof of a maximal rank theorem for generic double points in projective space, Trans. Amer. Math. Soc. 353 (2001), no. 5, 1907-1920. MR 2002i:14046
  • [Ch3] K. Chandler, Linear systems of cubics singular at generic points of projective space, Compositio Math. 134 (2002), no. 3, 269-282.
  • [CH] C. Ciliberto and A. Hirschowitz, Hypercubiques de $\mathbb{P}^4$ avec sept points singuliers génériques, C. R. Acad. Sci. Paris Sér. I Math. 313 (1991), no. 3, 135-137. MR 92g:14043
  • [C] A. Clebsch, Über Curven vierter Ordnung, Journal für die Reine und Angewandte Mathematik (Crelle), Bd. 59 (1861), 125-145.
  • [EI] J. Emsalem and A. Iarrobino, Inverse system of a symbolic power I, J. Algebra 174 (1995), 1080-1090. MR 96i:13017
  • [H] A. Hirschowitz, La méthode d'Horace pour l'interpolation à plusieurs variables, Manuscripta Math. 50 (1985), 337-388. MR 86j:14013
  • [IK] A. Iarrobino and V. Kanev, Power sums, Gorenstein algebras, and determinantal loci. Appendix C by Iarrobino and Steven L. Kleiman. Lecture Notes in Mathematics, 1721. Springer-Verlag, Berlin, 1999. MR 2001d:14056
  • [L] E. Lasker, Zur Theorie die kanonischen Formen, Math. Annalen 58 (1904), 434-440.
  • [P] F. Palatini, Sulla rappresentazione delle forme ed in particolare della cubica quinaria con la somma di potenze di forme lineari,. Atti Acad. Torino 38, (1903), 43-50.
  • [S] J. J. Sylvester, Sur une extension d'un théorème de Clebsch relatif aux courbes du quatrième degré. Comptes Rendus CII. (1886) 1532-1534.
  • [T1] A. Terracini, Sulle $V_k$ per cui la varieta degli $S_h(h+1)$-seganti ha dimensione minore dell'ordinario, Rend. Circ. Mat. Palermo 31 (1911), 527-530.
  • [T2] A. Terracini, Sulla rappresentazione delle coppie di forme ternarie mediante somme di potenze di forme lineari, Annali di Mat. Pura Appl. Serie III, 24 (1915), 1-10.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 14N10, 14C20

Retrieve articles in all journals with MSC (2000): 14N10, 14C20


Additional Information

Karen A. Chandler
Affiliation: Department of Mathematics, University of Notre Dame, Notre Dame, Indiana 46556
Email: kchandle@noether.math.nd.edu

DOI: https://doi.org/10.1090/S0002-9939-03-07153-3
Received by editor(s): April 17, 2001
Received by editor(s) in revised form: October 14, 2002
Published electronically: June 23, 2003
Communicated by: Michael Stillman
Article copyright: © Copyright 2003 American Mathematical Society

American Mathematical Society