Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Nevanlinna-Pick interpolation: Pick matrices have bounded number of negative eigenvalues


Authors: V. Bolotnikov, A. Kheifets and L. Rodman
Journal: Proc. Amer. Math. Soc. 132 (2004), 769-780
MSC (2000): Primary 41A05, 32A35
DOI: https://doi.org/10.1090/S0002-9939-03-07096-5
Published electronically: July 29, 2003
MathSciNet review: 2019954
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The Nevanlinna-Pick interpolation problem is studied in the class of functions defined on the unit disk without a discrete set, with the property that all their Pick matrices have not more than a prescribed number of negative eigenvalues. It is shown, in particular, that the degenerate problem always has a unique solution, not necessarily meromorphic. A related extension problem to a maximal function in the class is also studied.


References [Enhancements On Off] (What's this?)

  • 1. V. M. Adamjan, D. Z. Arov, and M. G. Kre{\u{\i}}\kern.15emn, Analytic properties of the Schmidt pairs of a Hankel operator and the generalized Schur-Takagi problem, (Russian) Mat. Sb. (N.S.) 86(128) (1971), 34-75. MR 45:7505
  • 2. V. M. Adamjan, D. Z. Arov, and M. G. Krein, Bounded operators which commute with a $C_{00}$ class contraction whose rank of nonunitarity is one, (Russian) Funkcional Anal. i Prilozhen 3 (1969), 86-87. MR 41:5990
  • 3. V. M. Adamjan, D. Z. Arov, and M. G. Krein, Infinite Hankel matrices and generalized problems of Carathéodory-Fejér and F. Riesz, (Russian) Funkcional Anal. i Prilozhen 2 (1968), 1-19. MR 38:2591
  • 4. J. Agler and N. J. Young, Functions which are almost multipliers of Hilbert function spaces, Proc. London Math. Soc. 76 (1998), 453-475. MR 99g:46027
  • 5. D. Alpay, A. Dijksma, J. Rovnyak, and H. de Snoo, Schur functions, operator colligations and reproducing kernel Pontryagin spaces, Operator Theory: Advances and Applications, vol. 96, Birkhäuser-Verlag, Basel, 1997. MR 2000a:47024
  • 6. J. A. Ball, I. Gohberg, and L. Rodman, Interpolation of rational matrix functions, Operator Theory: Advances and Applications, vol. 45, Birkhäuser-Verlag, Basel, 1990. MR 92m:47027
  • 7. J. A. Ball and J. W. Helton, A Beurling-Lax theorem for the Lie group $\mathbf{U} (m,\,n)$ which contains most classical interpolation theory, J. Operator Theory 9 (1983), 107-142. MR 84m:47046
  • 8. J. A. Ball and J. W. Helton, Interpolation problems of Pick-Nevanlinna and Loewner types for meromorphic matrix functions: parametrization of the set of all solutions, Integral Equations and Operator Theory 9 (1986), 155-203. MR 87j:30085
  • 9. V. Bolotnikov, On the Carathéodory-Fejér interpolation for generalized Schur functions, preprint.
  • 10. V. Bolotnikov, A. Kheifets, and L. Rodman, Functions with Pick matrices having bounded number of negative eigenvalues, Contemporary Mathematics 323 (2003), 393-417.
  • 11. T. Constantinescu and A. Gheondea, The Schur algorithm and coefficient characterizations for generalized Schur functions, Proc. Amer. Math. Soc. 128 (2000), no. 9, 2705-2713. MR 2000m:47015
  • 12. A. Dijksma and H. Langer, Notes on a Nevanlinna-Pick interpolation problem for generalized Nevanlinna functions, in: Topics in interpolation theory, Oper. Theory Adv. Appl., 95 (1997), 69-91. MR 98g:47015
  • 13. L. B. Golinskii, A generalization of the matrix Nevanlinna-Pick problem, Izv. Akad. Nauk Armyan. SSR Ser. Mat. 18 (1983), 187-205. (Russian). MR 85g:47049
  • 14. M. G. Kre{\u{\i}}\kern.15emn and H. Langer, Über die verallgemeinerten Resolventen und die charakteristische Funktion eines isometrischen Operators im Raume $\Pi \sb{\kappa }$, Colloq. Math. Soc. János Bolyai 5, North-Holland, Amsterdam, 1972, pp. 353-399. MR 54:11103
  • 15. J. E. Marsden and M. J. Hoffman, Basic complex analysis, second ed., W. H. Freeman and Company, NY, 1987. MR 88m:30001
  • 16. R. Nevanlinna, Über beschränkte analytische Funktionen, Ann. Acad. Sci. Fenn. Ser. A 32 (1929), no. 7.
  • 17. A. A. Nudelman, A generalization of classical interpolation problems, Dokl. Akad. Nauk. SSSR 256 (1981), 790-793. (Russian). MR 82f:30033
  • 18. J. L. Walsh, Interpolation and approximation by rational functions in the complex domain, fourth ed., Amer. Math. Soc., Providence, R.I., 1960. MR 36:1672a

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 41A05, 32A35

Retrieve articles in all journals with MSC (2000): 41A05, 32A35


Additional Information

V. Bolotnikov
Affiliation: Department of Mathematics, The College of William and Mary, Williamsburg, Virginia 23187-8795
Email: vladi@math.wm.edu

A. Kheifets
Affiliation: Department of Mathematics, The College of William and Mary, Williamsburg, Virginia 23187-8795
Email: sykhei@wm.edu

L. Rodman
Affiliation: Department of Mathematics, The College of William and Mary, Williamsburg, Virginia 23187-8795
Email: lxrodm@math.wm.edu

DOI: https://doi.org/10.1090/S0002-9939-03-07096-5
Keywords: Pick matrices, negative squares, Nevanlinna-Pick interpolation
Received by editor(s): September 12, 2002
Received by editor(s) in revised form: October 23, 2002
Published electronically: July 29, 2003
Additional Notes: The research of the third author was supported in part by NSF grant DMS-9988579
Communicated by: Joseph A. Ball
Article copyright: © Copyright 2003 American Mathematical Society

American Mathematical Society