Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Approximate fixed point sequences and convergence theorems for Lipschitz pseudocontractive maps


Authors: C. E. Chidume and H. Zegeye
Journal: Proc. Amer. Math. Soc. 132 (2004), 831-840
MSC (2000): Primary 47H06, 47H09, 47J05, 47J25
DOI: https://doi.org/10.1090/S0002-9939-03-07101-6
Published electronically: August 19, 2003
MathSciNet review: 2019962
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $K$ be a nonempty closed convex subset of a real Banach space $E$ and $T$ be a Lipschitz pseudocontractive self-map of $K$ with $F(T):=\{x\in K:Tx=x\}\neq \emptyset$. An iterative sequence $\{x_n\}$ is constructed for which $\vert\vert x_n-Tx_n\vert\vert\rightarrow 0$ as $n\rightarrow \infty$. If, in addition, $K$ is assumed to be bounded, this conclusion still holds without the requirement that $F(T)\neq \emptyset.$ Moreover, if, in addition, $E$ has a uniformly Gâteaux differentiable norm and is such that every closed bounded convex subset of $K$ has the fixed point property for nonexpansive self-mappings, then the sequence $\{x_n\}$ converges strongly to a fixed point of $T$. Our iteration method is of independent interest.


References [Enhancements On Off] (What's this?)

  • 1. R. E. Bruck, Jr.; A strongly convergent iterative method for the solution of $0\in U(x)$ for a maximal monotone operator $U$ in Hilbert space, J. Math. Anal. Appl. 48 (1974), 114-126. MR 50:14383
  • 2. C. E. Chidume; On the approximation of fixed points of nonexpansive mappings, Houston J. Math. 7 (1981), 345-355. MR 83b:47063
  • 3. C. E. Chidume; Iterative approximation of fixed points of Lipschitz pseudocontractive maps, Proc. Amer. Math. Soc. 129 (2001), 2245-2251.MR 2002e:47071
  • 4. C. E. Chidume and C. Moore; The solution by iteration of nonlinear equations in uniformly smooth Banach spaces, J. Math. Anal. Appl. 215 (1997), 132-146. MR 98m:47107
  • 5. C. E. Chidume and C. Moore; Fixed point iteration for pseudocontractive maps, Proc. Amer. Math. Soc. 127(4) (1999), 1163-1170. MR 99f:47068
  • 6. C. E. Chidume and S. Mutangadura; An example on the Mann iteration method for Lipschitz pseudocontractions, Proc. Amer. Math. Soc. 129 (2001), (8), 2359-2363. MR 2002f:47104
  • 7. I. Cioranescu; Geometry of Banach spaces, duality mappings and nonlinear problems, Kluwer Academic Publishers, Dordrecht, 1990. MR 91m:46021
  • 8. M. Edelstein; A remark on a theorem of M. A. Krasnoselskii, Amer. Math. Monthly 73 (1966), 509-510. MR 33:3072
  • 9. S. Ishikawa; Fixed points by a new iteration method, Proc. Amer. Math. Soc. 44(1) (1974), 147-150. MR 49:1243
  • 10. S. Ishikawa; Fixed points and iteration of a nonexpansive mapping in a Banach space, Proc. Amer. Math. Soc. 59(1) (1976), 65-71.MR 54:1030
  • 11. T. Kato; Nonlinear semigroups and evolution equations, J. Math. Soc. Japan 19 (1967), 508-520.MR 37:1820
  • 12. M. A. Krasnoselskii; Two remarks on the method of successive approximations, Uspehi Mat. Nauk 10 (1955), 123-127. MR 16:833a
  • 13. T. C. Lim and H. K. Xu; Fixed point theorems for asymptotically nonexpansive mappings, Nonlinear Anal. TMA 22 (1994), 1345-1355. MR 95i:47103
  • 14. W. R. Mann; Mean value methods in iteration, Proc. Amer. Math. Soc. 4 (1953), 506-510. MR 14:988f
  • 15. C. Moore and B.V.C. Nnoli; Iterative solution of nonlinear equations involving set-valued uniformly accretive operators, Comput. Math. Appl. 42 (2001), 131-140.MR 2002f:47145
  • 16. C. H. Morales, Strong convergence theorems for pseudo-contractive mappings in Banach spaces, Houston J. Math. 16 (1990), 549-557. MR 92f:47063
  • 17. C. H. Morales and J. S. Jung; Convergence of paths for pseudocontractive mappings in Banach spaces, Proc. Amer. Math. Soc. 128 (2000), 3411-3419.MR 2001b:47090
  • 18. M. O. Osilike; Iterative solution of nonlinear equations of the $\psi$-strongly accretive type, J. Math. Anal. Appl. 200 (1996), 259-271.MR 97d:65032
  • 19. W. V. Petryshyn; Construction of fixed points of demicompact mappings in Hilbert space, J. Math. Anal. Appl. 14 (1966), 276-284. MR 33:3147
  • 20. L. Qihou; On Naimpally and Singh's open questions, J. Math. Anal. Appl. 124 (1987), 157-164. MR 88j:47078
  • 21. L. Qihou; The convergence theorems of the sequence of Ishikawa iterates for hemicontractive mappings, J. Math. Anal. Appl. 148 (1990), 55-62.MR 92b:47094
  • 22. L. Qihou; Iterative sequences for asymptotically quasi-nonexpansive mappings, J. Math. Anal. Appl. 259 (2001), 1-7. MR 2002h:47111
  • 23. S. Reich; Iterative methods for accretive sets, in ``Nonlinear Equations in Abstract Spaces", Academic Press, New York, 1978, pp. 317-326. MR 82c:47065
  • 24. H. Schaefer; Uber die Methode sukzessiver Approximationen, Jber. Deutsch. Math. Verein. 59 (1957), 131-140.MR 18:811g
  • 25. J. Schu; Approximating fixed points of Lipschitzian pseudocontractive mappings, Houston J. Math. 19 (1993), 107-115.MR 94f:47066
  • 26. B. Turett; A dual view of a theorem of Baillon, Nonlinear Analysis and Applications (S .P. Singh and J. H. Burry, eds.), Marcel Dekker, New York, 1982, pp. 279-286. MR 84g:47054
  • 27. E. Zeidler; Nonlinear Functional Analysis and its Applications, Part IIA: Linear Monotone Operators; Part IIB: Nonlinear Monotone Operators (Springer-Verlag, Berlin/New York, 1985). MR 91b:47001, MR 91b:47002
  • 28. S. Zhang; On the convergence problems of Ishikawa and Mann iteration processes with error for $\psi$-pseudo contractive type mappings. Appl. Math. Mechanics 21 (2000), 1-12. MR 2001c:47080

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 47H06, 47H09, 47J05, 47J25

Retrieve articles in all journals with MSC (2000): 47H06, 47H09, 47J05, 47J25


Additional Information

C. E. Chidume
Affiliation: The Abdus Salam International Centre for Theoretical Physics, Trieste, Italy
Email: chidume@ictp.trieste.it

H. Zegeye
Affiliation: The Abdus Salam International Centre for Theoretical Physics, Trieste, Italy
Email: habz@ictp.trieste.it

DOI: https://doi.org/10.1090/S0002-9939-03-07101-6
Keywords: Normalized duality maps, uniformly G\^{a}teaux differentiable norm, pseudocontractive maps
Received by editor(s): May 27, 2002
Received by editor(s) in revised form: November 4, 2002
Published electronically: August 19, 2003
Additional Notes: The second author undertook this work when he was visiting the Abdus Salam International Centre for Theoretical Physics, Trieste, Italy, as a postdoctoral fellow.
Communicated by: Joseph A. Ball
Article copyright: © Copyright 2003 American Mathematical Society

American Mathematical Society