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PHRAGMÉN-LINDELÖF THEOREMS

P. C. FENTON AND JOHN ROSSI

(Communicated by Juha M. Heinonen)

Abstract. Results of Phragmén-Lindelöf type are obtained for subharmonic
functions in sectorial domains of bounded angular extent.

1. Introduction

The main results here have to do with the least harmonic majorants of sub-
harmonic functions in sectorial domains of bounded angular extent. We will say
a domain D is sectorial if its boundary consists of two simple curves Γ1 and Γ2

joining 0 to ∞, which are nonintersecting unless they are identical, and D has an-
gular extent at most 2η, where 0 < η ≤ π, if, for all positive r, the measure of
{arg z : z ∈ Dr} is at most 2η. Here Dr = D ∩ {z : |z| = r}.

For a function u(z), subharmonic in D, we write

BD(r, u) = sup
z∈Dr

u(z), AD(r, u) = inf
z∈Dr

u(z),

and drop the “D” if D is the whole plane. As usual, we denote the Riesz measure
associated with u(z) by µ(z, u), and write µ∗(r, u) = µ(D ∩ {z : |z| ≤ r}, u) and

N(r, u) =
∫ r

0

µ∗(t, u)
t

dt.

N(r, u) is well defined if u(z) is harmonic near the origin, which may be assumed
in what follows without loss of generality. We will also assume throughout that
u(z) is not harmonic in the whole of D, so that µ(z, u) is not identically 0, and
N(r, u)→ ∞ as r → ∞. As will be apparent, this too entails no loss of generality
in our results.

We shall prove:

Theorem 1. Suppose that u(z) is subharmonic in the plane and such that

(1)
B(r, u)
rρ

→ 0 as r →∞,

where 0 < ρ < 1/2, and that D is a sectorial domain of angular extent at most 2η,
where 0 < η ≤ π. Given α > 0, let rα be a point (which need not be unique) at
which N(r, u)− αrρ attains its maximum value, aα say, on [0,∞). Then aα →∞
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and rα → ∞ as α → 0 and there exist numbers bα → ∞ as α → 0 such that, if
HD(z, u) is the least harmonic majorant of u(z) in D,

(2) HD(z, u) < (1 + (tanπρ)(tan ηρ))u(z)− bα,
for all z ∈ Drα .

Condition (1) cannot be relaxed. The function u(reiθ) = krρ cos(π − |θ|)ρ,
where k = (cos ηρ) sec(π − η)ρ, is subharmonic in D = {z : | arg z| < η}, and
B(r, u)/rρ = cos ηρ. Moreover, HD(z, u) = rρ cos θρ and, for all real positive values
of z,

HD(z, u)
u(z)

=
cos(π − η)ρ

(cosπρ)(cos ηρ)
= 1 + (tanπρ)(tan ηρ).

The proof of Theorem 1 follows the method of a paper by Hinkkanen and Rossi
[7], but with the addition of a technique used in the proof of a theorem that Boas
[1, p. 4] and Cartwright [2, p. 34] refer to as Beurling’s theorem. This technique is
applied repeatedly here, simply mimicking its original use in the proof of Theorem
2 but using it in what appears to be a new way in proving Theorems 1 and 3.
Theorem 2 extends Beurling’s theorem to sectorial domains.

Theorem 2. Suppose that D is a sectorial domain bounded by Γ1 and Γ2, of
angular extent at most 2η, and that u(z) is subharmonic in D and has a continuous
extension to Γ1 and Γ2. Suppose also that

(i) lim infr→∞BD(r, u)/rπ/(2η) = 0, and
(ii) u(z) ≤ φ(|z|) on Γ1 and Γ2, where φ(r) is continuous and unbounded above

and such that φ(r)/rρ → 0 as r→∞, for some ρ satisfying 0 < ρ < 1/2.
Given α > 0, let rα be a point (which need not be unique) at which φ(r) − αrρ

attains its maximum value, aα say, on [0,∞). Then aα → ∞ and rα → ∞ as
α→ 0 and there exist numbers bα →∞ as α→ 0 such that, if HD(z, u) is the least
harmonic majorant of u(z) in D,

HD(z, u) < (sec ηρ)φ(|z|) − bα,
for all z ∈ Drα .

The condition (ii) cannot be relaxed. If D = {z : | arg z| < η}, ρ is such that
0 < ρ < min{1/2, π/(2η)} and u(reiθ) = rρ = φ(r), then (i) holds and (ii) just fails.
Moreover, HD(reiθ , u) = (sec ηρ)(cos θρ)rρ, and thus, for all real, positive values of
z, HD(z, u) = (sec ηρ)φ(|z|).

To prove Theorem 1 we need a result that is not without interest in itself.

Theorem 3. Suppose that u(z) is subharmonic in the plane and that B(r, u)/rρ →
0 as r → ∞, where 0 < ρ < 1. Given α > 0, let rα be a point (which need not
be unique) at which N(r, u) − αrρ attains its maximum value, aα say, on [0,∞).
Then aα → ∞ and rα → ∞ as α → 0 and there exist numbers bα → ∞ as α → 0
such that the following inequalities hold:

A(rα, u) > πρ(cotπρ)N(rα, u) + bα,(3)

B(rα, u) < πρ(cscπρ)N(rα, u)− bα,(4)

A(rα, u) +B(rα, u) > πρ(cot(πρ/2))N(rα, u) + bα,(5)

and, if 0 < ρ < 1/2 and β > ρ,

(6)
∫ ∞

0

log
∣∣∣∣rβα + tβ

rβα − tβ

∣∣∣∣dµ∗(t, u) < πρ(tan(πρ/(2β)))N(rα, u)− bα.
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A version of the cosπρ theorem follows from (3), (4) and (5). Eremenko, Shea
and Sodin [4] proved that the weaker inequalities

A(r, u) > (1 + o(1))πρ(cot πρ)N(r, u), B(r, u) < (1 + o(1))πρ(csc πρ)N(r, u),

hold simultaneously on a sequence of strong Polya peaks r →∞ under the weaker
assumption that ρ is the lower order of u.

The paper concludes with a discussion of the main result of [7], and an example
that shows it to be sharp.

2. Proof of Theorem 3

Since [6, (3.9.5), (3.9.6) and Theorem 3.19, p. 127] N(r, u) ≤ B(r, u+) − u(0),
we have N(r, u)/rρ → 0 as r → ∞. It follows that, given α > 0, if aα =
max0≤r<∞(N(r, u)−αrρ) = N(rα, u)−αrρα, then aα →∞ and rα →∞ as α→ 0.
We have:

Lemma 4. µ∗(r, u) is continuous at rα and µ∗(rα, u) = αρrρα. Thus N ′(rα, u)
exists and equals αρrρ−1

α .

To see this, write l = limt→r−α µ
∗(t, u), L = limt→r+

α
µ∗(t, u), which exist since

µ∗(t, u) is nondecreasing. We have L ≥ l. Also, for t > rα, N(t, u) − N(rα, u) ≤
α(tρ− rρα); that is, (L+ o(1)) log(t/rα) ≤ (αρrρ−1

α + o(1))(t− rα), giving L ≤ αρrρα.
In a similar way, l ≥ αρrρα, and the lemma follows.

As usual, in proving (3), (4) and (5), we may assume that u(z) is harmonic off
the negative real axis. With this assumption, we have the representation

(7) A(rα, u) =
∫ ∞

0

µ∗(t, u)
t

rα
rα − t

dt,

the integral (a Cauchy principal value [8, SF, 4.23]) being the limit of I1 + I2 as
ε→ 0+, where

I1 =
∫ rα−ε

0

µ∗(t, u)
t

rα
rα − t

dt, I2 =
∫ ∞
rα+ε

µ∗(t, u)
t

rα
rα − t

dt.

Integrating by parts,

I1 =
[
N(t, u)

rα
rα − t

]rα−ε
0

−
∫ rα−ε

0

N(t, u)
rα

(rα − t)2
dt

≥ rα
ε
N(rα − ε, u)−

∫ rα−ε

0

(αtρ + aα)
rα

(rα − t)2
dt

=
rα
ε

(N(rα − ε, u)− α(rα − ε)ρ − aα) + aα + αρ

∫ rα−ε

0

tρ−1 rα
rα − t

dt,(8)

and similarly,

I2 ≥
rα
ε

(N(rα + ε, u)− α(rα + ε)ρ − aα) + αρ

∫ ∞
rα+ε

tρ−1 rα
rα − t

dt.

Now, as ε→ 0,
rα
ε

(N(rα − ε, u)− α(rα − ε)ρ − aα)

=
rα
ε

(α(rρα − (rα − ε)ρ)− (N(rα, u)−N(rα − ε, u))) = o(1),(9)
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from Lemma 4, and similarly,
rα
ε

(N(rα + ε, u)− α(rα + ε)ρ − aα) = o(1).

So, combining the inequalities and allowing ε to tend to 0, we get

A(rα, u) ≥ aα + αρ

∫ ∞
0

tρ−1 rα
rα − t

dt

= aα + αρrρα

∫ ∞
0

tρ−1

1− tdt

= aα + απρ(cotπρ)rρα.(10)

Since αrρα = N(rα, u)− aα, we obtain

A(rα, u) ≥ πρ(cotπρ)N(rα, u) + aα(1− πρ cotπρ),

and (3) follows, since aα →∞ as α→ 0.
(4) is approached in a similar way:

B(rα, u) =
∫ ∞

0

µ∗(t, u)
t

rα
rα + t

dt

=
∫ ∞

0

N(t, u)
rα

(rα + t)2
dt

≤
∫ ∞

0

(αtρ + aα)
rα

(rα + t)2
dt

= aα + αρrρα

∫ ∞
0

tρ−1

1 + t
dt

= aα + απρ(csc πρ)rρα.(11)

Since αrρα = N(rα, u)− aα, we obtain

B(rα, u) ≤ πρ(csc πρ)N(rα, u) + aα(1− πρ csc πρ),

and (4) follows, since aα →∞ as α→ 0.
For (5), we have

A(rα, u) +B(rα, u) =
∫ ∞

0

µ∗(t, u)
t

2rα2

r2
α − t2

dt =
∫ ∞

0

µ∗(
√
t, u)
t

r2
α

r2
α − t

dt,

an integral of the same form as (7), and following a similar path we obtain

A(rα, u) +B(rα, u) ≥ 2aα + απρ(cot(πρ/2))rρα.

(5) follows from this by substituting αrρα = N(rα, u)− aα.
The left-hand side of (6) is, from the monotone convergence theorem, the limit

as ε→ 0+ of J1 + J ′1 + J2 + J ′2, where

J1 =
∫ rα−ε

0

log
∣∣∣∣rβα + tβ

rβα − tβ

∣∣∣∣dµ∗(t, u), J2 =
∫ ∞
rα+ε

log
∣∣∣∣rβα + tβ

rβα − tβ

∣∣∣∣dµ∗(t, u),

J ′1 = (µ∗(rα, u)− µ∗(rα − ε, u)) log
∣∣∣∣rβα + (rα − ε)β

rβα − (rα − ε)β

∣∣∣∣,
J ′2 = (µ∗(rα + ε, u)− µ∗(rα, u)) log

∣∣∣∣rβα + (rα + ε)β

rβα − (rα + ε)β

∣∣∣∣.



PHRAGMÉN-LINDELÖF THEOREMS 765

Integrating by parts twice, using the fact that N(t, u) ≤ αtρ+aα, and then reversing
both integrations by parts, we obtain

J1 ≤
[
(µ∗(t, u)− αρtρ) log

∣∣∣∣rβα + tβ

rβα − tβ

∣∣∣∣+ (N(t, u)− αtρ − aα)
2βrβαtβ

t2β − r2β
α

]rα−ε
0

+ αρ2

∫ rα−ε

0

log
∣∣∣∣rβα + tβ

rβα − tβ

∣∣∣∣tρ−1dt.(12)

When combined with J ′1, the first part of the evaluation term in (12) is

(µ∗(rα, u)− αρ(rα − ε)ρ) log
∣∣∣∣rβα + (rα − ε)β

rβα − (rα − ε)β

∣∣∣∣
= αρ(rρα − (rα − ε)ρ) log

(
2rα
βε

(1 + o(1))
)

= O(ε log(1/ε)) = o(1),(13)

as ε→ 0, using Lemma 4. For the second part of the evaluation term,

(N(rα − ε, u)− α(rα − ε)ρ − aα)
2βrβα(rα − ε)β

(rα − ε)2β − r2β
α

= (1 + o(1))
rα
ε

((N(rα, u)−N(rα − ε, u)− α(rρα − (rα − ε)ρ))

= (rα + o(1))(N ′(rα, u)− αρrρ−1
α + o(1)) = o(1),(14)

again using Lemma 4. Thus

J1 + J ′1 ≤ αρ2

∫ rα−ε

0

log
∣∣∣∣rβα + tβ

rβα − tβ

∣∣∣∣tρ−1dt+ o(1).

J2 + J ′2 is treated in the same way (the condition β > ρ is used at this point
to ensure that the contributions at ∞ vanish) and, combining the inequalities for
J1 + J ′1 and J2 + J ′2 and allowing ε to tend to 0, we obtain [see [7, p. 158]]∫ ∞

0

log
∣∣∣∣rβα + tβ

rβα − tβ

∣∣∣∣dµ∗(t, u) ≤ αρ2

∫ ∞
0

log
∣∣∣∣rβα + tβ

rβα − tβ

∣∣∣∣tρ−1dt

= απρ(tan(πρ/(2β)))rρα.(15)

(6) follows from this, after substituting αrρα = N(rα, u)− aα.

3. Proof of Theorem 1

For z ∈ D,

HD(z, u) = u(z) +
∫
D

gD(ζ, z)dµ(ζ, u),

where gD(ζ, z) is Green’s function for D. As in [7], with β = π/(2η), if z ∈ Drα ,∫
D

gD(ζ, z)dµ(ζ, u) ≤
∫ ∞

0

log
∣∣∣∣rβα + tβ

rβα − tβ

∣∣∣∣dµ∗(t, u)

< πρ(tan ηρ)N(rα, u)− bα
< (tan ηρ)(tan πρ)A(rα, u)− bα,(16)

from Theorem 3, and Theorem 1 follows.
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4. Proof of Theorem 2

First a lemma:

Lemma 5. Suppose that D is the domain of Theorem 2 and, given ρ such that
0 < ρ < 1/2, let HD(z, v) be the least harmonic majorant of v(z) = |z|ρ in D.
Then, for all z in D,

HD(z, v) ≤ (sec ηρ)|z|ρ.

In this case, when v(z) = |z|ρ, we have µ∗(t, u) = ρtρ, so that dµ(ζ, v) =
1

2πρ
2|ζ|ρ−1dθd|ζ|. Thus

HD(z, v) = v(z) +
∫
D

gD(ζ, z)dµ(ζ, u)

= v(z) +
ρ2

2π

∫ ∞
0

tρ−1dt

∫
Dt

gD(teiθ, z)dθ.(17)

Also, if D∗ is the circular symmetrization of D, then [5, (9.2.10)]∫
Dt

gD(teiθ, z)dθ ≤
∫
D∗t

gD∗(teiθ, |z|)dθ

≤
∫

Ωt

gΩ(teiθ, |z|)dθ,(18)

using the monotonicity of Green’s functions, where Ω = {z : | arg z| < η}. This last
integral, when added to v(z), is the least harmonic majorant of v(z) in Ω—that is,
HΩ(reiθ , v) = rρ(sec ηρ)(cos θρ)—evaluated at |z|, and the lemma follows.

Turning to the proof of Theorem 2, let aα = max0≤r<∞(φ(r)−αrρ) = φ(rα)−αrρα
(note that, since φ(r) is unbounded above, aα → ∞ and rα → ∞ as α → 0), and
consider U(z) = u(z) − αHD(z, v) − aα, where HD(z, v) is the least harmonic
majorant of v(z) = |z|ρ in D, as in Lemma 5. For z on Γ1 or Γ2, U(z) ≤ φ(|z|) −
α|z|ρ − aα ≤ 0, and we deduce from the Carleman-Tsuji-Heins inequality ([9, p.
116] or [5, p. 548, where π/2η ≤ α(ρ); see pp. 535-536 for the definition of α(ρ)])
that either lim infr→∞BD(r, u)/rπ/(2η) > 0, which is ruled out by the hypotheses,
or else U(z) ≤ 0 in D; that is,

u(z) ≤ αHD(z, v) + aα ≤ α(sec ηρ)|z|ρ + aα,

for all z in D. Since αHD(z, v) + aα is harmonic in D, the same inequality holds
with u replaced by its least harmonic majorant, HD(z, u), and in particular, if
z ∈ Drα , so that α|z|ρ = αrρα = φ(rα)− aα, we obtain

HD(z, u) ≤ αHD(z, v) + aα ≤ (sec ηρ)φ(|z|) + aα(1− sec ηρ),

and Theorem 2 follows.

5. Asymptotic functions: an example

The context of Hinkkanen and Rossi’s paper is that of analytic functions having
asymptotic functions. To be specific, it is supposed that Γ1 and Γ2 are simple curves
that join 0 to ∞ and intersect at most finitely often in any bounded region (unless
they are identical). Γ1 and Γ2 enclose a sequence of domains D1, D2, D3,. . . ; the
sequence may be finite or infinite. We set D =

⋃
j Dj and suppose that f(z) is

analytic in D, continuous in D, and such that f(z) = O(1) as z → ∞ along Γ1

and f(z) = a(z) + O(1) as z → ∞ along Γ2, where a(z) is a non-constant entire
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function of order ρ < 1/2. The conclusion is that, if the angular extent of D is no
more than 2η, where 0 < η ≤ π, and if ρ < 1/(2 + 2η/π), then the sequence D1,
D2, D3,. . . , is finite (so that the last domain in the sequence is unbounded) and

(19) lim inf
r→∞

BD(r, log |f |)/rπ/(2η) > 0.

(Fenton and Dudley Ward [3] had shown that (19) holds when D is a sector of
opening 2η.) Actually, showing that Γ1 and Γ2 cannot intersect infinitely often
requires no assumption about the growth of f(z). Taking η = π leads to the
curious observation that no entire function can have distinct asymptotic functions
of order less than 1/4 along paths that intersect at a sequence of points tending to
∞.

Not surprisingly, given the origins of Theorem 1 in the method of [7], (19) can
be deduced from Theorem 1. Rather than pursue this, however, we conclude with
an example that shows that the condition ρ < 1/(2 + 2η/π) is best possible. (This
was known in the case η = π [3].)

Given η > 0, where 0 < η ≤ π, we construct an analytic function f(z) in
D = {z : 0 < arg z < 2η}, continuous in D, such that f(r) = a(r) + O(1) as
r→∞, where a(z) is a non-constant entire function of order ρ = 1/(2+2η/π), and
f(re2iη) = O(1) as r →∞, while BD(r, f) = O(rρ). Thus, since π/(2η) ≥ 1/2 > ρ,
(19) fails.

With ρ = 1/(2 + 2η/π), where 0 < η ≤ π, let λ = 1/(4ρ) (so that 1/2 < λ ≤ 1)
and let Eλ(z) be the Mittag-Leffler function [2, p. 50]. Eλ(z) is an entire function
of order 1/λ mean type that is bounded in the sector λπ/2 ≤ arg z ≤ 2π − λπ/2.
Let c = ei(1−λ)π/2, and let b1 = 1, b2 = i, b3 = −1, b4 = −i be the fourth roots of
unity. We define

a(z) =
4∑
j=1

Eλ(cbjz1/4),

where 0 ≤ arg z ≤ 2π, an entire function of order ρ mean type, and also

f(z) = Eλ(cz1/4),

which is analytic in D and continuous in D. Evidently BD(r, log |f |) = O(rρ).
When z = r, a(z) = Eλ(cz1/4) + O(1) = f(z) + O(1) as r → ∞, since cb2 =

ei(2−λ)π/2, cb3 = ei(3−λ)π/2, cb4 = ei(4−λ)π/2, and

λπ/2 ≤ (2− λ)π/2 < (4− λ)π/2 = 2π − λπ/2.
When z = re2iη , on the other hand, cz1/4 = r1/4eλπi/2, and so f(z) = O(1) as
r→∞.
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