REFINING THE CONSTANT IN A MAXIMUM PRINCIPLE FOR THE BERGMAN SPACE

CHUNJIE WANG

(Communicated by Joseph A. Ball)

Abstract. Let $A^2(D)$ be the Bergman space over the open unit disk D in the complex plane. Korenblum conjectured that there is an absolute constant c, $0 < c < 1$, such that whenever $|f(z)| \leq |g(z)|$ ($f, g \in A^2(D)$) in the annulus $c < |z| < 1$, then $\|f\| \leq \|g\|$. In this note we give an example to show that $c < 0.69472$.

Let D be the open unit disk in the complex plane C. The Bergman space $A^2(D)$ consists of analytic functions f in D such that

$$\|f\| = \left[\int_D |f(z)|^2 dA(z) \right]^{\frac{1}{2}} < +\infty,$$

where

$$dA(z) = \frac{1}{\pi} dx dy = \frac{1}{\pi} r dr d\theta, \quad z = x + iy = re^{i\theta}$$

is the normalized Lebesgue area measure on D. Korenblum [1] conjectured that there is an absolute constant c, $0 < c < 1$, such that whenever $|f(z)| \leq |g(z)|$ in the annulus $c < |z| < 1$ ($f, g \in A^2(D)$), then $\|f\| \leq \|g\|$.

On the other hand, the example of $f(z) = \frac{1}{\sqrt{2}}$, $g(z) = z$ shows that $c \leq \frac{1}{\sqrt{2}}$. However, Martin (see [1]) gave the following example to show that $c = \frac{1}{\sqrt{2}}$ is not sharp.

Example. Let

$$f(z) = \frac{1 + (\sqrt{2} - 1)z^{10}}{1 + (\sqrt{2} - 1)z^{-10}}, \quad g(z) = \sqrt{2}z.$$

Then $|f(z)| \leq |g(z)|$ for $\frac{1}{\sqrt{2}} < |z| < 1$ but $\|f\| > \|g\| = 1$.

In fact, an upper bound on c can be found from Martin’s example. Namely, if f and g are as in Martin’s example, consider instead the pair h and g, where $h = \frac{1}{\|f\|} f$. Then $\|h\| = \|g\| = 1$ and $|h(z)| \leq |g(z)|$ in an annulus $c' < |z| < 1$. Using Mathematica and Lemma 1 below, we can easily obtain that $c' = 0.70450 \cdots < \frac{1}{\sqrt{2}}$.

Received by the editors October 28, 2002 and, in revised form, November 12, 2002.
2000 Mathematics Subject Classification. Primary 30C80, 30H05.
Lemma 1 (see [4]). If \(f(z) = \sum_{k=0}^{+\infty} a_k z^k \in A^2(\mathbb{D}) \), then

\[
\|f\| = \left(\sum_{k=0}^{+\infty} \frac{|a_k|^2}{k+1} \right)^{1/2}.
\]

Before stating our example, we recall that the singular inner functions are defined as

\[S_a(z) = \exp \left(\frac{1+az}{1-z} \right), \]

which play an important role in Bergman spaces [5], where \(a \) is any positive constant. Our main result is the following.

Theorem. Let

\[f(z) = e^{-a} S_a(z^n) = e^{-\frac{2a}{1+c^n}}, \]
\[g(z) = e^{-\frac{2a}{1+c^n}} z, \]

where \(0 < c < 1 \), \(a = -\frac{1+c^n}{c^n} \log c > 0, \quad n \in \mathbb{N} \). Then \(|f(z)| \leq |g(z)| \) in \(c < |z| < 1 \). Moreover, when \(n = 14 \) and \(c = 0.69472 \), we have \(\|f\| > \|g\| \).

Proof. It is easy to see that

\[\varphi(r) = \max_{|z|=r} \left| \frac{f(z)}{g(z)} \right| = \max_{|z|=r} \left| \frac{|f(z)|}{e^{-\frac{2a}{1+c^n}} r} \right| = e^{-\frac{2a}{1+c^n}}. \]

Hence, we have

\[\varphi(c) = 1, \quad \varphi(1) = \lim_{r \to 1^-} \varphi(r) = 1. \]

Since \(\frac{f(z)}{g(z)} \) is analytic in \(c \leq |z| < 1 \), the maximum modulus theorem implies that \(|f(z)| \leq |g(z)| \) in \(c < |z| < 1 \).

A direct calculation shows that the Taylor expansion of \(f(z) \) at 0 is

\[f(z) = e^{-2a} \left[1 - 2az^n + 2(a^2 - a)z^{2n} - \frac{4a^3 - 12a^2 + 6a}{3} z^{3n} + \cdots \right]. \]

It follows from Lemma 1 that

\[
\int_{\mathbb{D}} |f(z)|^2 dA(z) - \int_{\mathbb{D}} |g(z)|^2 dA(z) > e^{-4a} \left[1 + \frac{4a^2}{n+1} + \frac{4(a^2 - a)^2}{2n+1} + \frac{(4a^3 - 12a^2 + 6a)^2}{9(3n+1)} - \frac{e^{2a}}{2} \right] \triangleq I(a).
\]

Using Mathematica, we obtain that when \(n = 14 \) and \(c = 0.69472 \),
\[e^{4a} I(a) = 0.0000214904 > 0. \]

So we have \(\|f\| > \|g\| \). \(\square \)

Remark. It is likely that for all functions \(f(z) \) and \(g(z) \) (which depend on \(n \) and \(a > 0 \)) defined in the theorem, \(c = 0.6947116 \cdots \) is the best one.
ACKNOWLEDGEMENT

The author thanks the referee for several helpful suggestions, especially for pointing out that Martin’s example can give an upper bound on the c in Korenblum’s theorem.

REFERENCES

School of Mathematical Sciences, Peking University, Beijing 100871, People’s Republic of China
Current address: Department of Mathematics, Tianjin Polytechnic University, Tianjin, 300160, People's Republic of China
E-mail address: wcj498@eyou.com