Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

A negative answer to Nevanlinna's type question and a parabolic surface with a lot of negative curvature


Authors: Itai Benjamini, Sergei Merenkov and Oded Schramm
Journal: Proc. Amer. Math. Soc. 132 (2004), 641-647
MSC (2000): Primary 14J15, 60J65
Published electronically: September 29, 2003
MathSciNet review: 2019938
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Consider a simply-connected Riemann surface represented by a Speiser graph. Nevanlinna asked if the type of the surface is determined by the mean excess of the graph: whether mean excess zero implies that the surface is parabolic, and negative mean excess implies that the surface is hyperbolic. Teichmüller gave an example of a hyperbolic simply-connected Riemann surface whose mean excess is zero, disproving the first of these implications. We give an example of a simply-connected parabolic Riemann surface with negative mean excess, thus disproving the other part. We also construct an example of a complete, simply-connected, parabolic surface with nowhere positive curvature such that the integral of curvature in any disk about a fixed basepoint is less than $-\epsilon$ times the area of disk, where $\epsilon>0$ is some constant.


References [Enhancements On Off] (What's this?)

  • 1. Lars V. Ahlfors, Conformal invariants: topics in geometric function theory, McGraw-Hill Book Co., New York-Düsseldorf-Johannesburg, 1973. McGraw-Hill Series in Higher Mathematics. MR 0357743
  • 2. A. D. Aleksandrov and V. A. Zalgaller, Intrinsic geometry of surfaces, Translated from the Russian by J. M. Danskin. Translations of Mathematical Monographs, Vol. 15, American Mathematical Society, Providence, R.I., 1967. MR 0216434
  • 3. Peter G. Doyle, Random walk on the Speiser graph of a Riemann surface, Bull. Amer. Math. Soc. (N.S.) 11 (1984), no. 2, 371–377. MR 752802, 10.1090/S0273-0979-1984-15315-1
  • 4. Peter G. Doyle and J. Laurie Snell, Random walks and electric networks, Carus Mathematical Monographs, vol. 22, Mathematical Association of America, Washington, DC, 1984. MR 920811
  • 5. R. Nevanlinna, Über die Riemannsche Fläche einer analytischen Funktion, Proceedings, International Congress of Mathematicians 1, Zurich, 1932.
  • 6. Rolf Nevanlinna, Analytic functions, Translated from the second German edition by Phillip Emig. Die Grundlehren der mathematischen Wissenschaften, Band 162, Springer-Verlag, New York-Berlin, 1970. MR 0279280
  • 7. Yu. G. Reshetnyak, Two-dimensional manifolds of bounded curvature, In: Geometry IV. Encyclopedia of Mathematical Sciences, (Yu. G. Reshetnyak, ed.), Vol. 70, Springer-Verlag, pp. 3-163, 1993.
  • 8. O. Lehto and K. I. Virtanen, Quasiconformal mappings in the plane, 2nd ed., Springer-Verlag, New York-Heidelberg, 1973. Translated from the German by K. W. Lucas; Die Grundlehren der mathematischen Wissenschaften, Band 126. MR 0344463
  • 9. Paolo M. Soardi, Potential theory on infinite networks, Lecture Notes in Mathematics, vol. 1590, Springer-Verlag, Berlin, 1994. MR 1324344
  • 10. S. Stoïlow, Leçons sur les principes topologiques de la théorie des fonctions analytiques. Deuxième édition, augmentée de notes sur les fonctions analytiques et leurs surfaces de Riemann, Gauthier-Villars, Paris, 1956 (French). MR 0082545
  • 11. O. Teichmüller, Untersuchungen über Konforme und Quasikonforme Abbildung, Deutsch. Math. 3, pp. 621-678, 1938.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 14J15, 60J65

Retrieve articles in all journals with MSC (2000): 14J15, 60J65


Additional Information

Itai Benjamini
Affiliation: Department of Mathematics, Weizmann Institute of Science, Rehovot 76100, Israel
Email: itai@math.weizmann.ac.il

Sergei Merenkov
Affiliation: Department of Mathematics, Purdue University, West Lafayette, Indiana 47907
Email: smerenko@math.purdue.edu

Oded Schramm
Affiliation: Microsoft Research, One Microsoft Way, Redmond, Washington 98052
Email: schramm@microsoft.com

DOI: http://dx.doi.org/10.1090/S0002-9939-03-07147-8
Received by editor(s): October 17, 2002
Published electronically: September 29, 2003
Additional Notes: The research of the second author was supported by NSF grant DMS-0072197
Dedicated: In memory of Bob Brooks
Communicated by: Jozef Dodziuk
Article copyright: © Copyright 2003 American Mathematical Society