On Rakhmanov's theorem for Jacobi matrices
Author:
Sergey A. Denisov
Journal:
Proc. Amer. Math. Soc. 132 (2004), 847852
MSC (2000):
Primary 47B36
Published electronically:
July 7, 2003
MathSciNet review:
2019964
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: We prove Rakhmanov's theorem for Jacobi matrices without the additional assumption that the number of bound states is finite. This result solves one of Nevai's open problems.
 1.
N.
I. Akhiezer, The classical moment problem and some related
questions in analysis, Translated by N. Kemmer, Hafner Publishing Co.,
New York, 1965. MR 0184042
(32 #1518)
 2.
S. A. Denisov, On the continuous analog of Rakhmanov's theorem for orthogonal polynomials, J. Funct. Anal. 198 (2003), 465480.
 3.
L.
Ya. Geronimus, Orthogonal polynomials: Estimates, asymptotic
formulas, and series of polynomials orthogonal on the unit circle and on an
interval, Authorized translation from the Russian, Consultants Bureau,
New York, 1961. MR 0133643
(24 #A3469)
 4.
Ya.
L. Geronimus, Polynomials orthogonal on a circle and their
applications, Amer. Math. Soc. Translation 1954
(1954), no. 104, 79. MR 0061706
(15,869i)
 5.
Attila
Máté, Paul
Nevai, and Vilmos
Totik, Asymptotics for the ratio of leading coefficients of
orthonormal polynomials on the unit circle, Constr. Approx.
1 (1985), no. 1, 63–69. MR 766095
(85j:42045), http://dx.doi.org/10.1007/BF01890022
 6.
Paul
Nevai, Research problems in orthogonal polynomials,
Approximation theory VI, Vol.\ II (College Station, TX, 1989) Academic
Press, Boston, MA, 1989, pp. 449–489. MR 1091045
(91m:42023)
 7.
Paul
G. Nevai, Orthogonal polynomials, Mem. Amer. Math. Soc.
18 (1979), no. 213, v+185. MR 519926
(80k:42025), http://dx.doi.org/10.1090/memo/0213
 8.
Paul
Nevai, Weakly convergent sequences of functions and orthogonal
polynomials, J. Approx. Theory 65 (1991), no. 3,
322–340. MR 1109411
(92f:42031), http://dx.doi.org/10.1016/00219045(91)90095R
 9.
E.
M. Nikishin, The discrete SturmLiouville operator and some
problems of function theory, Trudy Sem. Petrovsk. 10
(1984), 3–77, 237 (Russian, with English summary). MR 778879
(86h:39007)
 10.
E. A. Rakhmanov, On the asymptotics of the ratio of orthogonal polynomials. II, Math. USSR Sb. 46 (1983), 105117.
 11.
Frigyes
Riesz and Béla
Sz.Nagy, Functional analysis, Frederick Ungar Publishing Co.,
New York, 1955. Translated by Leo F. Boron. MR 0071727
(17,175i)
 12.
Gábor
Szegő, Orthogonal polynomials, 4th ed., American
Mathematical Society, Providence, R.I., 1975. American Mathematical
Society, Colloquium Publications, Vol. XXIII. MR 0372517
(51 #8724)
 1.
 N. I. Akhiezer, The Classical Moment Problem and Some Related Questions in Analysis, Hafner Publishing Company, New York, 1965. MR 32:1518
 2.
 S. A. Denisov, On the continuous analog of Rakhmanov's theorem for orthogonal polynomials, J. Funct. Anal. 198 (2003), 465480.
 3.
 Y. L. Geronimus, Orthogonal Polynomials: Estimates, asymptotic formulas, and series of polynomials orthogonal on the unit circle and on an interval, Consultants Bureau, New York, 1961. MR 24:A3469
 4.
 Ya. L. Geronimus, Polynomials Orthogonal on a Circle and their Applications, Amer. Math. Soc. Transl. (1), Vol. 3, Providence, Rhode Island, 1954, 178. MR 15:869i
 5.
 A. Máté, P. Nevai, and V. Totik, Asymptotics for the ratio of leading coefficients of orthogonal polynomials on the unit circle, Constr. Approx. 1 (1985), 6369. MR 85j:42045
 6.
 P. Nevai, Research problems in orthogonal polynomials, Approximation Theory 6, Vol. 2 (C. K. Chui et al., eds.), pp. 449489, Academic Press, Boston, 1989. MR 91m:42023
 7.
 P. Nevai, Orthogonal polynomials, Memoirs Amer. Math. Soc., Vol. 18, No. 213, Amer. Math. Soc., Providence, RI, 1979. MR 80k:42025
 8.
 P. Nevai, Weakly convergent sequences of functions and orthogonal polynomials, J. Approx. Theory 65 (1991) No. 3, 322340. MR 92f:42031
 9.
 E. M. Nikishin, The discrete SturmLiouville operator and some problems of function theory, Trudy Sem. Petrovsk. 10 (1984), 377 (in Russian), J. Soviet Math. 35 (1986), 26792744. MR 86h:39007
 10.
 E. A. Rakhmanov, On the asymptotics of the ratio of orthogonal polynomials. II, Math. USSR Sb. 46 (1983), 105117.
 11.
 F. Riesz and B. Sz.Nagy, Functional Analysis, Frederick Ungar Publishing, New York, 1955. MR 17:175i
 12.
 G. Szego, Orthogonal Polynomials, Amer. Math. Soc. Colloquium Publications, Vol. 23, Providence, RI, 1975. MR 51:8724
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC (2000):
47B36
Retrieve articles in all journals
with MSC (2000):
47B36
Additional Information
Sergey A. Denisov
Affiliation:
Department of Mathematics, California Institute of Technology, 25337, Pasadena, California 91125
Email:
denissov@caltech.edu
DOI:
http://dx.doi.org/10.1090/S0002993903071570
PII:
S 00029939(03)071570
Received by editor(s):
October 16, 2002
Received by editor(s) in revised form:
November 8, 2002
Published electronically:
July 7, 2003
Communicated by:
Andreas Seeger
Article copyright:
© Copyright 2003
American Mathematical Society
