On analogues of the Euler constant and Lerch's limit formula
Authors:
Nobushige Kurokawa and Masato Wakayama
Journal:
Proc. Amer. Math. Soc. 132 (2004), 935943
MSC (2000):
Primary 11M35, 33D05
Published electronically:
November 13, 2003
MathSciNet review:
2045407
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: We introduce and study a analogue of the Euler constant via a suitably defined analogue of the Riemann zeta function. We show, in particular, that the value is irrational. We also present a analogue of the Hurwitz zeta function and establish an analogue of the limit formula of Lerch in 1894 for the gamma function. This limit formula can be regarded as a natural generalization of the formula of .
 [A]
Richard
Askey, The 𝑞gamma and 𝑞beta functions,
Applicable Anal. 8 (1978/79), no. 2, 125–141.
MR 523950
(80h:33003), http://dx.doi.org/10.1080/00036817808839221
 [E]
P.
Erdös, On arithmetical properties of Lambert series, J.
Indian Math. Soc. (N.S.) 12 (1948), 63–66. MR 0029405
(10,594c)
 [HIKW]
Y. Hashimoto, Y. Iijima, N. Kurokawa and M. Wakayama, Euler's constants for the Selberg and the Dedekind zeta functions, Bulletin of the Belgian Mathematical Society Simon Stevin (to appear).
 [J]
F. H. Jackson, On definite integrals, Quart. J. Pure Appl. Math. 41 (1910), 193203.
 [KKW]
M. Kaneko, N. Kurokawa and M. Wakayama, A variation of Euler's approach to values of the Riemann zeta function, Kyushu Math. J. 57 (2003), 175192.
 [KW]
N. Kurokawa and M. Wakayama, A comparison between the sum over Selberg's zeroes and Riemann's zeroes, J. Ramanujan Math. Soc. 18 (2003), 221236. (Errata will also appear.)
 [L]
M. Lerch, Dalsi studie v oboru Malmsténovských rad, Rozpravy Ceské Akad. 3 No. 28 (1894), 161.
 [M]
Daniel
S. Moak, The 𝑞gamma function for 𝑞>1,
Aequationes Math. 20 (1980), no. 23, 278–285.
MR 577493
(81f:33002), http://dx.doi.org/10.1007/BF02190519
 [S]
H.
F. Sandham, A logarithmic transcendent, J. London Math. Soc.
24 (1949), 83–91. MR 0033385
(11,433b)
 [A]
 P. Askey, The gamma and beta functions, Applicable Analysis 8 (1978), 125141. MR 80h:33003
 [E]
 P. Erdös, On arithmetical properties of Lambert series, J. Indian Math. Soc. 12 (1948), 6366. MR 10:594c
 [HIKW]
 Y. Hashimoto, Y. Iijima, N. Kurokawa and M. Wakayama, Euler's constants for the Selberg and the Dedekind zeta functions, Bulletin of the Belgian Mathematical Society Simon Stevin (to appear).
 [J]
 F. H. Jackson, On definite integrals, Quart. J. Pure Appl. Math. 41 (1910), 193203.
 [KKW]
 M. Kaneko, N. Kurokawa and M. Wakayama, A variation of Euler's approach to values of the Riemann zeta function, Kyushu Math. J. 57 (2003), 175192.
 [KW]
 N. Kurokawa and M. Wakayama, A comparison between the sum over Selberg's zeroes and Riemann's zeroes, J. Ramanujan Math. Soc. 18 (2003), 221236. (Errata will also appear.)
 [L]
 M. Lerch, Dalsi studie v oboru Malmsténovských rad, Rozpravy Ceské Akad. 3 No. 28 (1894), 161.
 [M]
 D. S. Moak, The gamma function for , Aequationes Math. 20 (1980), 278285. MR 81f:33002
 [S]
 H. F. Sandham, A logarithmic transcendent, J. London Math. Soc. 24 (1949), 8391. MR 11:433b
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC (2000):
11M35,
33D05
Retrieve articles in all journals
with MSC (2000):
11M35,
33D05
Additional Information
Nobushige Kurokawa
Affiliation:
Department of Mathematics, Tokyo Institute of Technology, Meguro, Tokyo, 1520033 Japan
Email:
kurokawa@math.titech.ac.jp
Masato Wakayama
Affiliation:
Faculty of Mathematics, Kyushu University, Hakozaki, Fukuoka, 8128581 Japan
Email:
wakayama@math.kyushuu.ac.jp
DOI:
http://dx.doi.org/10.1090/S0002993903070254
PII:
S 00029939(03)070254
Keywords:
Euler's constant,
Riemann's zeta function,
Hurwitz's zeta function,
$q$gamma function,
Lerch's limit formula
Received by editor(s):
September 3, 2002
Published electronically:
November 13, 2003
Additional Notes:
Work in part supported by GrantinAid for Scientific Research (B) No. 11440010, and by GrantinAid for Exploratory Research No. 13874004, Japan Society for the Promotion of Science
Communicated by:
WenChing Winnie Li
Article copyright:
© Copyright 2003 American Mathematical Society
