Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Approximation in reflexive Banach spaces and applications to the invariant subspace problem


Authors: Isabelle Chalendar, Jonathan R. Partington and Martin Smith
Journal: Proc. Amer. Math. Soc. 132 (2004), 1133-1142
MSC (2000): Primary 41A29, 47A15, 46B20, 46E15
DOI: https://doi.org/10.1090/S0002-9939-03-07152-1
Published electronically: June 23, 2003
MathSciNet review: 2045430
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We formulate a general approximation problem involving reflexive and smooth Banach spaces, and give its explicit solution. Two applications are presented--the first is to the Bounded Completion Problem involving approximation of Hardy class functions, while the second involves the construction of minimal vectors and hyperinvariant subspaces of linear operators, generalizing the Hilbert space technique of Ansari and Enflo.


References [Enhancements On Off] (What's this?)

  • 1. D. Alpay, L. Baratchart, and J. Leblond.
    Some extremal problems linked with identification from partial frequency data.
    In R. F. Curtain, A. Bensoussan, and J.-L. Lions, editors, Analysis and optimization of systems: state and frequency domain approaches for infinite-dimensional systems (Sophia-Antipolis, 1992), pages 563-573. Springer-Verlag, Berlin, 1993. MR 93i:93005
  • 2. G. Androulakis.
    A note on the method of minimal vectors.
    Trends in Banach spaces and operator theory, Contemporary Mathematics, Ed. A. Kaminska, to appear.
  • 3. S. Ansari and P. Enflo.
    Extremal vectors and invariant subspaces.
    Trans. Amer. Math. Soc., 350:539-558, 1998. MR 98d:47019
  • 4. L. Baratchart and J. Leblond.
    Hardy approximation to ${L}\sp p$ functions on subsets of the circle with $1\leq p<\infty$.
    Constr. Approx., 14(1):41-56, 1998. MR 98i:41041
  • 5. L. Baratchart, J. Leblond, and J. R. Partington.
    Problems of Adamjan-Arov-Krein type on subsets of the circle and minimal norm extensions.
    Constr. Approx., 16(3):333-357, 2000. MR 2001j:41020
  • 6. B. Beauzamy.
    Introduction to Banach spaces and their geometry.
    North-Holland Publishing Co., Amsterdam, 1982.
    Notas de Matemática [Mathematical Notes], 86. MR 84g:46017
  • 7. I. Chalendar and J. Esterle.
    Le problème du sous-espace invariant.
    In J.-P. Pier, editor, Development of mathematics 1950-2000, pages 235-267. Birkhäuser, Basel, 2000. MR 2001i:47005
  • 8. I. Chalendar, J. Leblond, and J. R. Partington.
    Approximation problems in some holomorphic spaces, with applications.
    In A. A. Borichev and N. K. Nikolski, editors, Systems, Approximation, Singular Integral Operators, and Related Topics, Proceedings of IWOTA 2000, pages 143-168. Birkhäuser, 2001. MR 2002k:00031
  • 9. I. Chalendar and J. R. Partington.
    Constrained approximation and invariant subspaces.
    J. Math. Anal. Appl., 280:176-187, 2003.
  • 10. R. Deville, G. Godefroy, and V. Zizler.
    Smoothness and renormings in Banach spaces.
    Longman Scientific & Technical, Harlow, 1993. MR 94d:46012
  • 11. M. G. Kre{\u{\i}}\kern.15emn and P. Ja. Nudel'man.
    Approximation of functions in ${L}\sb{2}(\omega \sb{1},\omega \sb{2})$ by transmission functions of linear systems with minimal energy.
    Problemy Peredaci Informacii, 11(2):37-60, 1975.
    English translation. MR 58:1947
  • 12. J. Leblond and J. R. Partington.
    Constrained approximation and interpolation in Hilbert function spaces.
    J. Math. Anal. Appl., 234(2):500-513, 1999. MR 2000e:41033
  • 13. V. I. Lomonosov.
    Invariant subspaces for operators commuting with compact operators.
    Funct. Anal. Appl., 7:213-214, 1973.
  • 14. R. E. Megginson.
    An introduction to Banach space theory.
    Springer-Verlag, New York, 1998. MR 99k:46002
  • 15. H. Radjavi and P. Rosenthal.
    Invariant subspaces.
    Springer-Verlag, New York, 1973. MR 51:3924
  • 16. W. Rudin.
    Functional analysis.
    McGraw-Hill, Inc., New York, second edition, 1991. MR 92k:46001
  • 17. M. Smith.
    Constrained approximation in Banach spaces.
    Constr. Approx., to appear.
  • 18. V. G. Troitsky.
    Minimal vectors in arbitrary Banach spaces.
    Preprint, 2002.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 41A29, 47A15, 46B20, 46E15

Retrieve articles in all journals with MSC (2000): 41A29, 47A15, 46B20, 46E15


Additional Information

Isabelle Chalendar
Affiliation: Institut Girard Desargues, UFR de Mathématiques, Université Claude Bernard Lyon 1, 69622 Villeurbanne Cedex, France
Email: chalenda@igd.univ-lyon1.fr

Jonathan R. Partington
Affiliation: School of Mathematics, University of Leeds, Leeds LS2 9JT, United Kingdom
Email: J.R.Partington@leeds.ac.uk

Martin Smith
Affiliation: Department of Mathematics, University of York, Heslington, York, YO10 5DD, United Kingdom
Email: mps6@york.ac.uk

DOI: https://doi.org/10.1090/S0002-9939-03-07152-1
Keywords: Constrained approximation, smoothness, invariant subspaces, Hardy spaces, extremal problems
Received by editor(s): October 7, 2002
Received by editor(s) in revised form: December 17, 2002
Published electronically: June 23, 2003
Communicated by: N. Tomczak-Jaegermann
Article copyright: © Copyright 2003 American Mathematical Society

American Mathematical Society