Spectral radii and eigenvalues of subdivision operators

Author:
Di-Rong Chen

Journal:
Proc. Amer. Math. Soc. **132** (2004), 1113-1123

MSC (2000):
Primary 42C15, 47B06

DOI:
https://doi.org/10.1090/S0002-9939-03-07194-6

Published electronically:
October 9, 2003

MathSciNet review:
2045428

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This paper discusses the spectra of matrix subdivision operators. We establish some formulas for spectral radii of subdivision operators on various invariant subspaces in . A formula for the spectral radius of a subdivision operator, in terms of the moduli of eigenvalues, is derived under a mild condition. The results are even new in the scalar case. In this case, we show that the subdivision operator has no eigenvector in if the corresponding subdivision scheme converges for some .

**1.**A. S. Cavaretta, W. Dahmen, and C. A. Micchelli,*Stationary subdivision*, Memoirs Amer. Math. Soc.**93**(1991), 1-186. MR**92h:65017****2.**D. R. Chen,*Algebraic properties of subdivision operators with matrix mask and their applications*, J. Approx. Theory**97**(1999), 294-310. MR**2000a:41025****3.**D. R. Chen,*Construction of smooth refinable function vectors by cascade algorithms*, SIAM J. Numer. Anal.**40**(2002), 1354-1368.**4.**I. Daubechies and J. Lagarias,*Two-scale difference equations I. Existence and global regularity of solutions*, SIAM J. Math. Anal.**22**(1991), 1388-1410. MR**92d:39001****5.**T. N. T. Goodman, C. A. Micchelli, and J. D. Ward,*Spectral radius formulas for subdivision operators*, Recent Advances in Wavelet Analysis (L. L. Schumaker and G. Webb, eds.), Academic Press, Boston, MA, 1994, pp. 335-360. MR**94m:47076****6.**Mark C. Ho,*Spectra of slant Toeplitz operators with continuous symbols*, Michigan Math. J.**44**(1997), 157-164. MR**98c:47034****7.**R. Q. Jia,*Subdivision schemes in**spaces*, Adv. Comput. Math.**3**(1995), 309-341. MR**96d:65028****8.**R. Q. Jia, S. D. Riemenschneider, and D. X. Zhou,*Approximation by multiple refinable functions*, Canadian J. Math.**49**(1997), 944-962. MR**99f:39036****9.**K. S. Lau and J. Wang,*Characterization of**-solutions for two-scale dilation equations*, SIAM J. Math. Anal.**26**(1995), 1018-1046. MR**96f:39004****10.**C. A. Micchelli and T. Sauer,*Regularity of multiwavelets*, Adv. Comput. Math.**7**(1997), 455-545. MR**99d:42067****11.**C. A. Micchelli and T. Sauer,*On vector subdivision*, Math. Z.**229**(1998), 621-674. MR**2000d:42016****12.**G.-C. Rota and G. Strang,*A note on the joint spectral radius*, Indag. Math.**22**(1960), 379-381. MR**26:5434****13.**Y. Wang, Two-scale dilation equations and the mean spectral radius, Random and Computational Dynamics**4**(1996), 49-72. MR**96j:42023****14.**D. X. Zhou,*The**-norm joint spectral radius for even integers*, Methods and Applications of Analysis**5**(1998), 39-54. MR**99e:42054****15.**D. X. Zhou,*Spectra of subdivision operators*, Proc. Amer. Math. Soc.**129**(2001), 191-202. MR**2001h:47049**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
42C15,
47B06

Retrieve articles in all journals with MSC (2000): 42C15, 47B06

Additional Information

**Di-Rong Chen**

Affiliation:
Department of Applied Mathematics, Beijing University of Aeronautics, Astronautics, Beijing 100083, China;
Department of Mathematics, Hubei Institute for Nationalities, Enshi 445000, Hubei, China

Email:
drchen@buaa.edu.cn

DOI:
https://doi.org/10.1090/S0002-9939-03-07194-6

Keywords:
Subdivision operator,
spectral radius,
joint spectral radius

Received by editor(s):
February 21, 2001

Received by editor(s) in revised form:
December 12, 2002

Published electronically:
October 9, 2003

Additional Notes:
Supported in part by NSF of China under Grant 10171007 and City University of Hong Kong under Grant 7001442

Communicated by:
David R. Larson

Article copyright:
© Copyright 2003
American Mathematical Society