Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)

 

Common Borel directions of a meromorphic function with zero order and its derivative


Author: Tien-Yu Peter Chern
Journal: Proc. Amer. Math. Soc. 132 (2004), 1171-1175
MSC (2000): Primary 30D30
Published electronically: October 2, 2003
MathSciNet review: 2045434
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: There is a meromorphic function of zero order for which the function and its derivative have no common Borel direction.


References [Enhancements On Off] (What's this?)

  • [1] Huai Hui Chen, Singular directions of meromorphic functions of order zero corresponding to Hayman’s inequality, Acta Math. Sinica 30 (1987), no. 2, 234–237 (Chinese). MR 891931 (88h:30044)
  • [2] Chia-tai Chuang, ``Un théorème relatif aux directions de Borel des fonctions méromorphes d'ordre fini, C. R. Acad. Sci. 204 (1937), 951-952.
  • [3] Henri Milloux, Sur les directions de Borel des fonctions entières, de leurs dérivées et de leurs intégrales, J. Analyse Math. 1 (1951), 244–330 (French, with Hebrew summary). MR 0047779 (13,930a)
  • [4] A. Rauch, Cas ou une direction de Borel d'une fonction entière $f(z)$ d'ordre finite est aussi direction de Borel pour $f'(z)$, C. R. Acad. Sci., 199 (1934), 1014-1016.
  • [5] John Rossi, A sharp result concerning cercles de remplissage, Ann. Acad. Sci. Fenn. Ser. A I Math. 20 (1995), no. 1, 179–185. MR 1304116 (95k:30062)
  • [6] M. Tsuji, Potential theory in modern function theory, Chelsea Publishing Co., New York, 1975. Reprinting of the 1959 original. MR 0414898 (54 #2990)
  • [7] G. Valiron,``Recherches sur le théorème de M. Borel dans la théorie des fonctions méromorphes", Acta Math. 52 (1928), 67-92.
  • [8] Lo Yang, Value distribution theory, Springer-Verlag, Berlin; Science Press Beijing, Beijing, 1993. Translated and revised from the 1982 Chinese original. MR 1301781 (95h:30039)
  • [9] Guang Hou Zhang, Common Borel directions of meromorphic functions and their successive derivatives or integrals. I, Acta Math. Sinica 20 (1977), no. 2, 73–98 (Chinese). MR 513593 (80d:30022a)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 30D30

Retrieve articles in all journals with MSC (2000): 30D30


Additional Information

Tien-Yu Peter Chern
Affiliation: Department of Mathematics, Michigan State University, East Lansing, Michigan 48824
Address at time of publication: Department of Applied Mathematics, I-Shou University, Kaohsiung 840, Taiwan
Email: pchern@math.msu.edu, tychern@isu.edu.tw

DOI: http://dx.doi.org/10.1090/S0002-9939-03-07195-8
PII: S 0002-9939(03)07195-8
Keywords: Common Borel direction, zero order
Received by editor(s): May 17, 2002
Received by editor(s) in revised form: December 19, 2002
Published electronically: October 2, 2003
Additional Notes: This paper was supported in part by the NSC R.O.C. under the contract NSC 92-2115-M-214-004, a fund from Academia Sinica (Taipei, Taiwan), and a fund from Michigan State University, U.S.A
Communicated by: Juha M. Heinonen
Article copyright: © Copyright 2003 American Mathematical Society