The splitting problem for subspaces of tensor products of operator algebras

Author:
Jon Kraus

Journal:
Proc. Amer. Math. Soc. **132** (2004), 1125-1131

MSC (2000):
Primary 46L10

DOI:
https://doi.org/10.1090/S0002-9939-03-07243-5

Published electronically:
November 4, 2003

MathSciNet review:
2045429

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The main result of this paper is that if is a von Neumann algebra that is a factor and has the weak* operator approximation property (the weak* OAP), and if is a von Neumann algebra, then every -weakly closed subspace of that is an -bimodule (under multiplication) splits, in the sense that there is a -weakly closed subspace of such that . Note that if is a von Neumann subalgebra of , then is an -bimodule if and only if . So this result is a generalization (in the case where has the weak* OAP) of the result of Ge and Kadison that if is a factor, then every von Neumann subalgebra of that contains splits. We also obtain other results concerning the splitting of -weakly closed subspaces of tensor products of von Neumann algebras and the splitting of normed closed subspaces of C*-algebras that generalize results previously obtained for von Neumann subalgebras and C*-subalgebras.

**[1]**E. G. Effros, N. Ozawa, and Z.-J. Ruan,*On injectivity and nuclearity for operator spaces*, Duke Math. J.**110**(2001), 489-521. MR**2002k:46151****[2]**E. G. Effros and Z.-J. Ruan,*On approximation properties for operator spaces*, International J. Math.**1**(1990), 163-187. MR**92g:46089****[3]**E. Effros and Z.-J. Ruan,*Operator Spaces*, The Clarendon Press, Oxford University Press, New York, 2000. MR**2002a:46082****[4]**L. Ge and R. V. Kadison,*On tensor products for von Neumann algebras*, Invent. Math.**123**(1996), 453-466. MR**97c:46074****[5]**H. Halpern,*Module homomorphisms of a von Neumann algebra into its center*, Trans. Amer. Math. Soc.**140**(1969), 183-193. MR**39:3321****[6]**J. Kraus,*The slice map problem for**-weakly closed subspaces of von Neumann algebras*, Trans. Amer. Math. Soc.**279**(1983), 357-376. MR**85e:46036****[7]**J. Kraus,*The slice map problem and approximation properties*, J. Funct. Anal.**102**(1991), 116-155. MR**92m:47083****[8]**S. Stratila,*Modular theory in operator algebras*, Abacus Press, Tunbridge Wells, 1981. MR**85g:46072****[9]**S. Stratila and L. Zsidó,*An algebraic reduction theory for W*-algebras, I*, J. Funct. Anal.**11**(1972), 295-313. MR**49:5875****[10]**S. Stratila and L. Zsidó,*The commutation theorem for tensor products over von Neumann algebras*, J. Funct. Anal.**165**(1999), 293-346. MR**2000j:46115****[11]**S. Wassermann,*The slice map problem for C*-algebras*, Proc. London Math. Soc. (3)**32**(1976), 537-559. MR**53:14152****[12]**S. Wassermann,*On tensor products of certain group C*-algebras*, J. Funct. Anal.**23**(1976), 239-254. MR**54:13582****[13]**S. Wassermann,*Injective W*-algebras*, Math. Proc. Cambridge Philos. Soc.**82**(1977), 39-47. MR**56:6418****[14]**S. Wassermann,*A pathology in the ideal space of*, Indiana Univ. Math. J.**27**(1978), 1011-1020. MR**80d:46113****[15]**J. Zacharias,*Splitting for subalgebras of tensor products*, Proc. Amer. Math. Soc.**129**(2001), 407-413. MR**2001e:46106****[16]**L. Zsidó,*A criterion for splitting C*-algebras in tensor products*, Proc. Amer. Math. Soc.**128**(2000), 2001-2006. MR**2000m:46119**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
46L10

Retrieve articles in all journals with MSC (2000): 46L10

Additional Information

**Jon Kraus**

Affiliation:
Department of Mathematics, State University of New York at Buffalo, Buffalo, New York 14260-2900

Email:
mthjek@acsu.buffalo.edu

DOI:
https://doi.org/10.1090/S0002-9939-03-07243-5

Received by editor(s):
June 14, 2002

Received by editor(s) in revised form:
December 13, 2002

Published electronically:
November 4, 2003

Communicated by:
David R. Larson

Article copyright:
© Copyright 2003
American Mathematical Society