Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A remark on global existence for small initial data of the minimal surface equation in Minkowskian space time


Author: Hans Lindblad
Journal: Proc. Amer. Math. Soc. 132 (2004), 1095-1102
MSC (2000): Primary 35-xx
DOI: https://doi.org/10.1090/S0002-9939-03-07246-0
Published electronically: September 18, 2003
MathSciNet review: 2045426
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We show that the nonlinear wave equation corresponding to the minimal surface equation in Minkowski space time has a global solution for sufficiently small initial data.


References [Enhancements On Off] (What's this?)

  • [CC] Y. Choquet-Bruhat and D. Christodoulou, Existence of global solutions of the Yang-Mills, Higgs and spinor field equations in $3+1$ dimensions, Ann. Sci. École Norm. Sup. (4) 14 (1981), 481-506. MR 84c:81041
  • [C1] D. Christodoulou, Global solutions of nonlinear hyperbolic equations for small initial data, Comm. Pure Appl. Math. 39 (1986), 267-282. MR 87c:35111
  • [C2] -, Oral communication, 1999.
  • [C3] -, Solutions globales des équations de Yang et Mills, C. R. Acad. Sci. Paris (Series A) 293 (1981), 139-141. MR 82k:58089
  • [CK1] D. Christodoulou and S. Klainerman, The nonlinear stability of Minkowski space-time, Princeton University Press, Princeton, NJ.
  • [Ha1] R. Hamilton, Oral Communication, Oberwolfach, 1994.
  • [Ho1] J. Hoppe, Some classical solutions of relativistic membrane equations in $4$-space-time dimensions., Phys. Lett. B 329, No. 1 (1994), 10-14. MR 95e:81180
  • [Hö1] L. Hörmander, $L^{1}$, $L^{\infty }$ estimates for the wave operator, Analyse Mathématique et Applications, Gauthier-Villars, Paris, 1988, pp. 211-234. MR 90e:35113
  • [Hö2] -, Lectures on nonlinear hyperbolic differential equations, Springer-Verlag, Berlin, 1997. MR 98e:35103
  • [HS1] G. Huisken and M. Struwe, Oral communication, 1999.
  • [JK1] F. John and S. Klainerman, Almost global existence to nonlinear wave equations in three space dimensions, Comm. Pure Appl. Math. 37 (1984), 443-455. MR 85k:35147
  • [K1] S. Klainerman, Uniform decay estimates and the Lorentz invariance of the classical wave equation, Comm. Pure Appl. Math. 38 (1985), 321-332. MR 86i:35091
  • [K2] -, The null condition and global existence to nonlinear wave equations, Lectures in Applied Mathematics, Vol. 23, Amer. Math. Soc., Providence, RI, pp. 293-326. MR 87h:35217
  • [K3] -, Global existence for nonlinear wave equations, Comm. Pure Appl. Math. 33 (1980), 43-101. MR 81b:35050
  • [K4] -, Long time behaviour of solutions to nonlinear wave equations, Proceedings of the International Congress of Mathematicians (Warsaw, 1983), PWN, Warsaw, 1984, pp. 1209-1215.
  • [LZ1] T. Li and Y. Zhou, Life-span of classical solutions to nonlinear wave equations in two space dimensions, J. Math. Pures et Appl. 73(3) (1994), 223-249. MR 95c:35174
  • [LZ2] T. Li and Y. Zhou, Life-span of classical solutions to fully nonlinear wave equations in two-space-dimensions II, J. Partial Differential Equations 6(1) (1993), 17-38. MR 95c:35175
  • [L1] H. Lindblad, On the lifespan of solutions of nonlinear wave equations with small initial data, Comm. Pure Appl. Math. 43 (1990), 445-472. MR 91i:35129
  • [L2] -, Global solutions of nonlinear wave equations, Comm. Pure Appl. Math. 45(9) (1992), 1063-1096. MR 94a:35080

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 35-xx

Retrieve articles in all journals with MSC (2000): 35-xx


Additional Information

Hans Lindblad
Affiliation: Department of Mathematics, University of California at San Diego, La Jolla, California 92093-0112
Email: lindblad@math.ucsd.edu

DOI: https://doi.org/10.1090/S0002-9939-03-07246-0
Received by editor(s): December 9, 2002
Published electronically: September 18, 2003
Communicated by: David S. Tartakoff
Article copyright: © Copyright 2003 American Mathematical Society

American Mathematical Society