A remark on global existence for small initial data of the minimal surface equation in Minkowskian space time

Author:
Hans Lindblad

Journal:
Proc. Amer. Math. Soc. **132** (2004), 1095-1102

MSC (2000):
Primary 35-xx

DOI:
https://doi.org/10.1090/S0002-9939-03-07246-0

Published electronically:
September 18, 2003

MathSciNet review:
2045426

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We show that the nonlinear wave equation corresponding to the minimal surface equation in Minkowski space time has a global solution for sufficiently small initial data.

**[CC]**Y. Choquet-Bruhat and D. Christodoulou,*Existence of global solutions of the Yang-Mills, Higgs and spinor field equations in**dimensions*, Ann. Sci. École Norm. Sup.**(4) 14**(1981), 481-506. MR**84c:81041****[C1]**D. Christodoulou,*Global solutions of nonlinear hyperbolic equations for small initial data*, Comm. Pure Appl. Math.**39**(1986), 267-282. MR**87c:35111****[C2]**-,*Oral communication*, 1999.**[C3]**-,*Solutions globales des équations de Yang et Mills*, C. R. Acad. Sci. Paris (Series A)**293**(1981), 139-141. MR**82k:58089****[CK1]**D. Christodoulou and S. Klainerman,*The nonlinear stability of Minkowski space-time*, Princeton University Press, Princeton, NJ.**[Ha1]**R. Hamilton,*Oral Communication*, Oberwolfach, 1994.**[Ho1]**J. Hoppe,*Some classical solutions of relativistic membrane equations in**-space-time dimensions.*, Phys. Lett. B**329**, No. 1 (1994), 10-14. MR**95e:81180****[Hö1]**L. Hörmander,*,**estimates for the wave operator*, Analyse Mathématique et Applications, Gauthier-Villars, Paris, 1988, pp. 211-234. MR**90e:35113****[Hö2]**-,*Lectures on nonlinear hyperbolic differential equations*, Springer-Verlag, Berlin, 1997. MR**98e:35103****[HS1]**G. Huisken and M. Struwe,*Oral communication*, 1999.**[JK1]**F. John and S. Klainerman,*Almost global existence to nonlinear wave equations in three space dimensions*, Comm. Pure Appl. Math.**37**(1984), 443-455. MR**85k:35147****[K1]**S. Klainerman,*Uniform decay estimates and the Lorentz invariance of the classical wave equation*, Comm. Pure Appl. Math.**38**(1985), 321-332. MR**86i:35091****[K2]**-,*The null condition and global existence to nonlinear wave equations*, Lectures in Applied Mathematics, Vol. 23, Amer. Math. Soc., Providence, RI, pp. 293-326. MR**87h:35217****[K3]**-,*Global existence for nonlinear wave equations*, Comm. Pure Appl. Math.**33**(1980), 43-101. MR**81b:35050****[K4]**-,*Long time behaviour of solutions to nonlinear wave equations,*, PWN, Warsaw, 1984, pp. 1209-1215.*Proceedings of the International Congress of Mathematicians (Warsaw, 1983)***[LZ1]**T. Li and Y. Zhou,*Life-span of classical solutions to nonlinear wave equations in two space dimensions*, J. Math. Pures et Appl.**73(3)**(1994), 223-249. MR**95c:35174****[LZ2]**T. Li and Y. Zhou,*Life-span of classical solutions to fully nonlinear wave equations in two-space-dimensions II*, J. Partial Differential Equations**6(1)**(1993), 17-38. MR**95c:35175****[L1]**H. Lindblad,*On the lifespan of solutions of nonlinear wave equations with small initial data*, Comm. Pure Appl. Math.**43**(1990), 445-472. MR**91i:35129****[L2]**-,*Global solutions of nonlinear wave equations*, Comm. Pure Appl. Math.**45(9)**(1992), 1063-1096. MR**94a:35080**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
35-xx

Retrieve articles in all journals with MSC (2000): 35-xx

Additional Information

**Hans Lindblad**

Affiliation:
Department of Mathematics, University of California at San Diego, La Jolla, California 92093-0112

Email:
lindblad@math.ucsd.edu

DOI:
https://doi.org/10.1090/S0002-9939-03-07246-0

Received by editor(s):
December 9, 2002

Published electronically:
September 18, 2003

Communicated by:
David S. Tartakoff

Article copyright:
© Copyright 2003
American Mathematical Society