Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

An estimate for the number of bound states of the Schrödinger operator in two dimensions


Author: Mihai Stoiciu
Journal: Proc. Amer. Math. Soc. 132 (2004), 1143-1151
MSC (2000): Primary 35P15, 35J10; Secondary 81Q10
DOI: https://doi.org/10.1090/S0002-9939-03-07257-5
Published electronically: August 28, 2003
MathSciNet review: 2045431
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For the Schrödinger operator $-\Delta + V$ on $\mathbb R ^2$ let $N(V)$ be the number of bound states. One obtains the following estimate:

\begin{displaymath}N(V) \leq 1 + \int_{\mathbb R ^2} \int_{\mathbb R ^2} \vert V... ...ert V(y)\vert \vert C_1 \ln \vert x-y\vert + C_2\vert^2 dx\,dy \end{displaymath}

where $C_1 = -\frac{1}{2\pi}$ and $C_2 = \frac{\ln 2 - \gamma}{2 \pi}$ ($\gamma$ is the Euler constant). This estimate holds for all potentials for which the previous integral is finite.


References [Enhancements On Off] (What's this?)

  • 1. M. Abramowitz and I. Stegun (editors), Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical Tables, Dover Publications, New York, 1972. MR 94b:00012
  • 2. G. B. Arfken and H. J. Weber, Mathematical Methods for Physicists, Academic Press, San Diego, CA, 1995. MR 98a:00001
  • 3. M. S. Birman, On the spectrum of singular boundary-value problems, Mat. Sb. (N.S.) 55 (97) (1961) 125-174, English translation, Amer. Math. Soc. Transl. 53 (1966), 23-80. MR 26:463
  • 4. H. J. Brascamp, Elliott H. Lieb and J. M. Luttinger, A general rearrangement inequality for multiple integrals, J. Funct. Anal. 17 (1974), 227-237. MR 49:10835
  • 5. N. N. Khuri, A. Martin, and T. T. Wu, Bound states in n dimensions (especially $n=1$and $n=2$), Few Body Systems 31 (2002), 83-89.
  • 6. M. Reed and B. Simon, Methods of Modern Mathematical Physics, I: Functional Analysis, Academic Press, New York, 1972. MR 58:12429a
  • 7. M. Reed and B. Simon, Methods of Modern Mathematical Physics, II: Fourier Analysis, Self Adjointness, Academic Press, New York, 1975. MR 58:12429b
  • 8. M. Reed and B. Simon, Methods of Modern Mathematical Physics, IV: Analysis of Operators, Academic Press, New York, 1978. MR 58:12429c
  • 9. J. Schwinger, On the bound states of a given potential, Proc. Nat. Acad. Sci. U.S.A. 47 (1961), 122-129. MR 23:B2833
  • 10. B. Simon, Trace Ideals and Their Applications, London Math. Soc. Lecture Note Series, Vol. 35, Cambridge University Press, Cambridge, 1979. MR 80k:47048
  • 11. B. Simon, The bound state of weakly coupled Schrödinger operators in one and two dimensions, Ann. Phys. 97 (1976), 279-288. MR 53:8646
  • 12. B. Simon, On the number of bound states of two-body Schrödinger operators: A review, in Studies in Mathematical Physics, Essays in Honor of Valentine Bargmann, Princeton University Press, Princeton, 1976, pp. 305-326.
  • 13. M. Klaus, On the bound state of Schrödinger operators in one dimension, Ann. Physics 108 (1977), no. 2, 288-300. MR 58:20010
  • 14. R. G. Newton, Bounds on the number of bound states for the Schrödinger equation in one and two dimensions, J. Operator Theory 10 (1983), no. 1, 119-125. MR 85e:81029
  • 15. N. Setô, Bargmann's inequalities in spaces of arbitrary dimension, Publ. Res. Inst. Math. Sci. 9 (1973/74), 429-461. MR 49:5596
  • 16. B. Simon, An introduction to the self-adjointness and spectral analysis of Schrödinger operators in The Schrödinger Equation (W. Thirring and P. Urban, eds.), Acta Phys. Aus. Suppl. 17, Springer, Vienna, 1977, pp. 19-42.
  • 17. M. Solomyak, Piecewise-polynomial approximation of functions from $H^l((0,1)^d)$, $2l=d$, and applications to the spectral theory of the Schrödinger operator, Israel J. Math. 86 (1994), no. 1-3, 253-275. MR 95e:35151

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 35P15, 35J10, 81Q10

Retrieve articles in all journals with MSC (2000): 35P15, 35J10, 81Q10


Additional Information

Mihai Stoiciu
Affiliation: Department of Mathematics 253-37, California Institute of Technology, Pasadena, California 91125
Email: mihai@its.caltech.edu

DOI: https://doi.org/10.1090/S0002-9939-03-07257-5
Received by editor(s): December 17, 2002
Published electronically: August 28, 2003
Communicated by: Joseph A. Ball
Article copyright: © Copyright 2003 American Mathematical Society

American Mathematical Society