An estimate for the number of bound states of the Schrödinger operator in two dimensions

Author:
Mihai Stoiciu

Journal:
Proc. Amer. Math. Soc. **132** (2004), 1143-1151

MSC (2000):
Primary 35P15, 35J10; Secondary 81Q10

DOI:
https://doi.org/10.1090/S0002-9939-03-07257-5

Published electronically:
August 28, 2003

MathSciNet review:
2045431

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For the Schrödinger operator on let be the number of bound states. One obtains the following estimate:

where and ( is the Euler constant). This estimate holds for all potentials for which the previous integral is finite.

**1.**M. Abramowitz and I. Stegun (editors),*Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical Tables*, Dover Publications, New York, 1972. MR**94b:00012****2.**G. B. Arfken and H. J. Weber,*Mathematical Methods for Physicists*, Academic Press, San Diego, CA, 1995. MR**98a:00001****3.**M. S. Birman,*On the spectrum of singular boundary-value problems*, Mat. Sb. (N.S.)**55 (97)**(1961) 125-174, English translation, Amer. Math. Soc. Transl.**53**(1966), 23-80. MR**26:463****4.**H. J. Brascamp, Elliott H. Lieb and J. M. Luttinger,*A general rearrangement inequality for multiple integrals*, J. Funct. Anal.**17**(1974), 227-237. MR**49:10835****5.**N. N. Khuri, A. Martin, and T. T. Wu,*Bound states in n dimensions (especially and )*, Few Body Systems**31**(2002), 83-89.**6.**M. Reed and B. Simon,*Methods of Modern Mathematical Physics, I: Functional Analysis*, Academic Press, New York, 1972. MR**58:12429a****7.**M. Reed and B. Simon,*Methods of Modern Mathematical Physics, II: Fourier Analysis, Self Adjointness*, Academic Press, New York, 1975. MR**58:12429b****8.**M. Reed and B. Simon,*Methods of Modern Mathematical Physics, IV: Analysis of Operators*, Academic Press, New York, 1978. MR**58:12429c****9.**J. Schwinger,*On the bound states of a given potential*, Proc. Nat. Acad. Sci. U.S.A.**47**(1961), 122-129. MR**23:B2833****10.**B. Simon,*Trace Ideals and Their Applications*, London Math. Soc. Lecture Note Series, Vol. 35, Cambridge University Press, Cambridge, 1979. MR**80k:47048****11.**B. Simon,*The bound state of weakly coupled Schrödinger operators in one and two dimensions*, Ann. Phys.**97**(1976), 279-288. MR**53:8646****12.**B. Simon,*On the number of bound states of two-body Schrödinger operators: A review*, in*Studies in Mathematical Physics, Essays in Honor of Valentine Bargmann*, Princeton University Press, Princeton, 1976, pp. 305-326.**13.**M. Klaus,*On the bound state of Schrödinger operators in one dimension*, Ann. Physics**108**(1977), no. 2, 288-300. MR**58:20010****14.**R. G. Newton,*Bounds on the number of bound states for the Schrödinger equation in one and two dimensions*, J. Operator Theory**10**(1983), no. 1, 119-125. MR**85e:81029****15.**N. Setô,*Bargmann's inequalities in spaces of arbitrary dimension*, Publ. Res. Inst. Math. Sci.**9**(1973/74), 429-461. MR**49:5596****16.**B. Simon,*An introduction to the self-adjointness and spectral analysis of Schrödinger operators*in*The Schrödinger Equation*(W. Thirring and P. Urban, eds.), Acta Phys. Aus. Suppl.**17**, Springer, Vienna, 1977, pp. 19-42.**17.**M. Solomyak,*Piecewise-polynomial approximation of functions from**,**, and applications to the spectral theory of the Schrödinger operator*, Israel J. Math.**86**(1994), no. 1-3, 253-275. MR**95e:35151**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
35P15,
35J10,
81Q10

Retrieve articles in all journals with MSC (2000): 35P15, 35J10, 81Q10

Additional Information

**Mihai Stoiciu**

Affiliation:
Department of Mathematics 253-37, California Institute of Technology, Pasadena, California 91125

Email:
mihai@its.caltech.edu

DOI:
https://doi.org/10.1090/S0002-9939-03-07257-5

Received by editor(s):
December 17, 2002

Published electronically:
August 28, 2003

Communicated by:
Joseph A. Ball

Article copyright:
© Copyright 2003
American Mathematical Society