Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Sebestyén moment problem: The multi-dimensional case

Authors: Dan Popovici and Zoltán Sebestyén
Journal: Proc. Amer. Math. Soc. 132 (2004), 1029-1035
MSC (2000): Primary 47A57, 47A20
Published electronically: December 1, 2003
MathSciNet review: 2045418
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Given a family $\{h_{\mathbf{n}}\}_{\mathbf{n}\in\mathbb{Z} _+^\Omega}$ of vectors in a Hilbert space $\mathcal{H}$ we characterize the existence of a family of commuting contractions $\mathbf{T}=\{T_\omega\}_{w\in \Omega}$ on $\mathcal{H}$ having regular dilation and such that

\begin{displaymath}h_{\mathbf{n}}=\mathbf{T} ^{\mathbf{n}} h_{\mathbf{0}},\quad \mathbf{n}\in\mathbb{Z} _+^\Omega. \end{displaymath}

The theorem is a multi-dimensional analogue for some well-known operator moment problems due to Sebestyén in case $\vert\Omega\vert=1$ or, recently, to Gavruta and Paunescu in case $\vert\Omega\vert=2$.

References [Enhancements On Off] (What's this?)

  • 1. S. Brehmer, Über vertauschbare Kontraktionen des Hilbertschen Raumes, Acta Sci. Math. Szeged 22 (1961), 106-111. MR 24:A1023a
  • 2. P. Gavruta and D. Paunescu, Sebestyén's moment problem and regular dilations, Acta Math. Hungar. 94 (2002), 223-232. MR 2003g:47014
  • 3. I. Halperin, Sz.-Nagy - Brehmer dilations, Acta Sci. Math. Szeged 23 (1962), 279-289. MR 27:6127a
  • 4. M. A. Neumark, Positive definite operator functions on a commutative group, Bulletin Acad. Sci. URSS Sér. Math. 7 (1943), 237-244. MR 5:272c
  • 5. Z. Sebestyén, Moment theorems for operators on Hilbert space, Acta Sci. Math. Szeged 44 (1982), 165-171. MR 84f:47004
  • 6. B. Sz.-Nagy, Bemerkungen zur vorstehenden Arbeit des Herrn S. Brehmer, Acta Sci. Math. Szeged 22 (1961), 112-114. MR 24:A1023b
  • 7. B. Sz.-Nagy and C. Foias, Harmonic analysis of operators on Hilbert space, Akadémiai Kiadó, Budapest, North-Holland, Amsterdam, London, 1970. MR 43:947

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 47A57, 47A20

Retrieve articles in all journals with MSC (2000): 47A57, 47A20

Additional Information

Dan Popovici
Affiliation: Department of Mathematics, University of the West, Ro-1900 Timişoara, Bd. V. Pârvan 4, Romania

Zoltán Sebestyén
Affiliation: Department of Applied Analysis Loránd Eötvös University, H-1117 Budapest, Pázmány Péter sétány 1/C, Hungary

Keywords: Sebesty\'en operator moment problem, multi-contraction, regular dilation, positive definite function
Received by editor(s): October 22, 2002
Published electronically: December 1, 2003
Dedicated: To the memory of Gyula Farkas
Communicated by: Joseph A. Ball
Article copyright: © Copyright 2003 American Mathematical Society

American Mathematical Society