On partial actions and groupoids

Author:
Fernando Abadie

Journal:
Proc. Amer. Math. Soc. **132** (2004), 1037-1047

MSC (2000):
Primary 46L05

DOI:
https://doi.org/10.1090/S0002-9939-03-07300-3

Published electronically:
November 7, 2003

MathSciNet review:
2045419

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that, as in the case of global actions, any partial action gives rise to a groupoid provided with a Haar system, whose -algebra agrees with the crossed product by the partial action.

**1.**F. Abadie,*Enveloping actions and Takai duality for partial actions*, J. Funct. Anal.**197**(2003), 14-67.**2.**R. Exel,*Circle actions on**-algebras, partial automorphisms and a generalized Pimsner-Voiculescu exact sequence*, J. Funct. Anal.**122**(1994), 361-401. MR**95g:46122****3.**R. Exel,*The Bunce-Deddens algebras as crossed products by partial automorphisms*, Bol. Soc. Brasil. Mat.**25**(2) (1994), 173-179. MR**95m:46091****4.**R. Exel,*Approximately finite**-algebras and partial automorphisms*, Math. Scand.**77**(1) (1995), 281-288. MR**97e:46085****5.**R. Exel,*Twisted partial actions, a classification of regular**-algebraic bundles*, Proc. London Math. Soc.**74**(1997), 417-443. MR**98d:46075****6.**R. Exel,*Partial actions of groups and actions of inverse semigroups*, Proc. Amer. Math. Soc.**126**(1998), no. 12, 3481-3494. MR**99b:46102****7.**R. Exel and M. Laca,*Cuntz-Krieger algebras for infinite matrices*, J. Reine Angew. Math.**512**(1999), 119-172. MR**2000i:46064****8.**R. Exel, M. Laca, and J. Quigg,*Partial dynamical systems and -algebras generated by partial isometries*, J. Operator Theory**47**(2002), no. 1, 169-186. MR**2003f:46108****9.**J. M. Fell and R. S. Doran,*Representations of *-algebras, locally compact groups, and Banach *-algebraic bundles*, Pure and Applied Mathematics**125**and**126**, Academic Press, Boston, MA, 1988. MR**90c:46001**, MR**90c:46002****10.**A. Haefliger,*Structures feuilletées et cohomologie à valeur dans un faiseau de groupoïdes*, Comment. Math. Helv.**32**(1958), 248-329. MR**20:6702****11.**K. Maclanahan,*K-theory for partial crossed products by discrete groups*, J. Funct. Anal.**130**(1995) 77-117. MR**96i:46083****12.**A. Nica,*On a groupoid construction for actions of certain inverse semigroups*, Internat. J. Math.**5**(1994), 349-372. MR**95h:46086****13.**A. L. T. Paterson,*Groupoids, inverse semigroups, and their operator algebras*, Progress in Mathematics**170**, Birkhaüser Boston, 1999. MR**2001a:22003****14.**J. C. Quigg and I. Raeburn,*Characterizations of crossed products by partial actions*, J. Operator Theory**37**(1997), No. 2, 311-340. MR**99a:46121****15.**J. C. Quigg and N. Sieben,*-actions of -discrete groupoids and inverse semigroups*, J. Austral. Math. Soc. Ser. A**66**(1999), 143-167. MR**2000k:46097****16.**Jean Renault,*A groupoid approach to**-algebras*, Lecture Notes in Math.**793**, Springer-Verlag, Berlin, 1980. MR**82h:46075****17.**N. Sieben,*-crossed products by partial actions and actions of inverse semigroups*, J. Austral. Math. Soc. Ser. A**63**(1997), 32-46. MR**2000b:46124**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
46L05

Retrieve articles in all journals with MSC (2000): 46L05

Additional Information

**Fernando Abadie**

Affiliation:
Centro de Matemática, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400, Montevideo, Uruguay

Email:
fabadie@cmat.edu.uy

DOI:
https://doi.org/10.1090/S0002-9939-03-07300-3

Keywords:
Groupoids,
Fell bundles,
partial actions

Received by editor(s):
April 25, 2001

Received by editor(s) in revised form:
October 24, 2002

Published electronically:
November 7, 2003

Additional Notes:
This work was partially financied by Fapesp, Brazil, Processo No. 95/04097-9

Communicated by:
David R. Larson

Article copyright:
© Copyright 2003
American Mathematical Society