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OF PERIODIC WAVELET COEFFICIENTS
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(Communicated by David R. Larson)

Abstract. We define and prove the existence of crossings of wavelet coeffi-
cients translated by integer multiples of the numerator of a continued fraction
convergent of the ratio of the sampling interval to the period of the wavelet
coefficients. Crossings are found to be translation invariant ±1. Intervals be-
tween crossings are analyzed for wavelets with n vanishing moments. These
wavelets act as multiscale differential operators. These crossings reveal differ-
ent locations in the period where there is equality in the nth derivative of an
averaging of the signal. These results will be employed in the estimation of
frequency components in future publications.

The following constitutes part of the author’s dissertation under the direction
of Arlan Ramsay at the University of Colorado at Boulder. Wavelet coefficients of
periodic signals have been the subject of previous study [1]. This paper is a fur-
ther analysis of the patterns of wavelet coefficients of periodic signals. A possible
application of this is the efficient isolation and analysis of periodic components of a
signal. Now, if the ratio between the period and the sampling interval is rational,
the wavelet coefficients will simply repeat after a whole number of periods have
been processed. However, if the ratio is irrational such repetition will not occur.
Instead, the coefficients will exhibit patterns associated with the continued fraction
convergents of this ratio. For the purposes of this paper data is assumed to be
discrete from a continuous signal f with period P . The wavelets are assumed to
decay rapidly so the wavelet coefficients exist. Let I be the interval between sam-
ples. Assume P is an irrational multiple of I. Wavelet coefficients will be computed
for a fixed level of resolution 2j, j ∈ Z. Let M = 2jP

I . Let
{
pk
qk

}
k∈N

be the set of

continued fraction convergents for M. The proposition below constructs a sequence
of wavelet coefficients which converges to an initial, untranslated coefficient.

Proposition 1. Let ψ be a wavelet with rapid decay. Let P,M, I, pk, qk, and f (x)
be as above. Then

(1) lim
k→∞

∫ ∞
−∞

ψ
(
2jx− l − pkI

)
f (x) dx =

∫ ∞
−∞

ψ
(
2jx− l

)
f (x) dx

for all l ∈ Z.

Proof. In the first integral, change the variable as follows:

(2) u = 2jx− l− pkI.
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We obtain

(3)
∫ ∞
−∞

ψ (u) f
(
2−j (u+ l + pkI)

) du
2j
.

Now,

2−j
∣∣∣∣∫ ∞
−∞

ψ (u)
[
f
(
2−j (u+ l + pkI)

)
− f

(
2−j (u+ l)

)]
du

∣∣∣∣
= 2−j

∣∣∣∣∫ ∞
−∞

ψ (u)
[
f
(
2−j (u+ l+ pkI)

)
− f

(
2−j

(
u+ l+ qk2jP

))]∣∣∣∣ .(4)

This follows from the P periodicity of f . Observe that

2−j
∣∣u+ l + pkI − u− l − qk2jP

∣∣ = 2−j
∣∣pkI − qk2jP

∣∣
= 2−j |qk|

∣∣∣∣pkqk I − 2jP
∣∣∣∣

< 2−j
qk |I|
q2
k

=
|I|

2jqk
.

(5)

The last inequality follows from a well-known theorem in the theory of continued
fractions. See [2]. Since f is continuous, we can choose k so large that the integral
is less than

(6) 2−j
∣∣∣∣∫ ∞
−∞

ψ (u) εdu
∣∣∣∣ ≤ 2−jε

∫ ∞
−∞
|ψ (u)| du,

for any ε > 0. �
We now define the main concept of this paper.
Let ψ be a wavelet with rapid decay. Let

(7) Wdf (j, x) = 2
j
2

∫ ∞
−∞

ψ
(
2jt− x

)
f (t) dt.

Definition 2. Let P,M, I, pk, qk, and f be as above and j ∈ Z remain fixed. For
r, s ∈ N let

(8) g (x) = Wdf (j, rI + x)−Wdf (j, sI + x) , for x ∈ R.
Let t ∈ N. We say r and s have a crossing of order k at t if

(9) sign (g (tpkI)) = −sign (g ((t+ 1) pkI))

or if

(10) g (tpkI) = 0.

The above definition and the results that follow explain phenomena that can
actually be observed when examining the wavelet coefficients of a periodic function
whereM is irrational (see the image below). This paper will concentrate on wavelets
with vanishing moments. It is known that wavelets with n vanishing moments act
as an nth order multiscale differential operator. That is, the signal is convolved with
an averaging function and the nth derivative is taken. These coefficients converge to
the nth derivative of the signal as the level of resolution increases. For a discussion
of these facts see [3].

We now give the meaning of the crossings for wavelets with n vanishing mo-
ments. The crossing of two strands of coefficients reveals two locations in the period
where the nth derivative of the averaged signal is equal. Two locations are revealed
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Figure 1.

because the strands begin with different translation values, rI and sI. Fortunately,
the crossings are predictable in that the interval between crossings and the number
of crossings in each period are nearly translation invariant. Since the crossings are
nearly translation invariant it is possible that by retaining only the coefficients near
the crossings and recording the length of the interval between them one may retain
much of the structure of the signal. Variations over time in the length between
these crossings will reveal variations in the internal derivative structure of the sig-
nal. This is a subject for future research. Rationale for studying these phenomena
therefore include what crossings reveal about the derivatives of a signal and the
possible future development of compression algorithms.

Each strand of coefficients can be identified since adjacent coefficients in a strand
will be locally the closest coefficients to one another. This is because each continued
fraction coefficient of M is a best approximation of M . If the signal is periodic,
these patterns of closest approach at order k will correspond to the numerator, pk,
of a continued fraction convergent of M . In the case where M is rational, strands
will each become horizontal once the order is sufficiently high and no crossings will
be observed. An algorithm for identifying strands from a set of coefficients in the
irrational case has been developed and will be the subject of future publications.
The image in Figure 1 is a set of wavelet coefficients of sinx where the analyzing
wavelet is the quadratic Battle-Lemarié wavelet. This wavelet has two vanishing
moments. Here I = 1, j = −1, P = 2π, and M = 2−12π

1 = π. The visible
strands correspond to pk = 22 and qk = 7 so that adjacent coefficients in a strand
are 22 coefficients apart. The crossings are of order k = 2. Other crossings are
present but not visually prominent. Figure 1 was generated by Wavelet Explorer
by Mathematica.

Now we prove the existence of the crossings in the irrational case. Note that
crossings exist for all orders k above a certain value.

Theorem 3. Let P,M, I, pk, qk, and f be as above. Assume also that Wdf (j, x)
has a finite number of zeroes in each interval of length 2jP . Then there exists a
K ∈ N such that for all k ≥ K, and all r, s ∈ N such that rI, sI < pkI, there exists
a t ∈ N such that r and s have a crossing of order k at t.

Proof. We first establish the following lemma.
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Lemma 3.1. Let k ∈ N. Then for all r, t ∈ Z there is a ξk such that |ξk| ∈(
I

qk+qk+1
, I
qk+1

)
such that

(11) Wdf (j, rI + tpkI) = Wdf (j, rI + t |ξk|).

Proof of Lemma 3.1. For odd k, pkqk I > 2jP . See [4].
Now,

(12)
1

qk (qk + qk+1)
<
pk
qk
−M <

1
qk (qk+1)

.

Hence,

(13)
I

qk + qk+1
< pkI − qk2jP <

I

qk+1
.

Set ξk = pkI − qk2jP > 0. Then for all t ∈ Z we have

(14) Wdf (j, rI + tpkI) = Wdf
(
j, rI + tξk + tqk2jP

)
.

Since tqk ∈ N we have

(15) Wdf
(
j, rI + tξk + tqk2jP

)
= Wdf (j, rI + tξk) .

This follows from the periodicity of f (x) .
If k is even, the results of the lemma hold with ξk < 0 and

(16)
−I
qk+1

< ξk <
−I

qk + qk+1
.

The proof of this is similar to the proof for odd k. Here ξk < 0 because k is even.
For this fact see [4]. �

Proof of Theorem 3. From Lemma 3.1 it follows that

(17) |ξk| >
I

qk + qk+1
.

Let

(18) T =
⌈(

(qk + qk+1) 2jP
I

)⌉
.

Then

T |ξk| >
(
qk + qk+1

I
2jP

)(
I

qk + qk+1

)
= 2jP.

(19)

Now, for k ≥ 1 we have |ξk| < I
qk+1

and qk ↑ ∞ as k →∞. Assume without loss of
generality that r < s.

Let g (x) be defined as in Definition 2. Assume g (x) is not identically zero. Then
g (x) is the difference of translates of a periodic function of period 2jP . From this
we conclude that g has period 2jP and also has a zero Riemann integral over each
interval of length 2jP . Since g is continuous we also conclude that it changes sign
on any such interval. Further, since Wdf (j, x) has only a finite number of zeroes
on each interval of length 2jP , we may select x0 such that g (x0) = 0 and also such
that there exists δ > 0 such that for (x0 − δ, x0 + δ), g (x) has the opposite sign
on (x0 − δ, x0) to that on (x0, x0 + δ). To see this, suppose there is no such x0.
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Then every open interval about x0 must contain a zero of Wdf (j, x) distinct from
x0. This contradicts the assumption that Wdf (j, x) has only a finite number of
zeroes on the intervals of length 2jP. Choose K so large that |ξK | < δ. Then there
exists a t ∈ N such that tξK ∈ (x0 − δ, x0] and (t+ 1) ξK ∈ [x0, x0 + δ). Clearly
such a t exists for any k ≥ K since |ξk| monotonically decreases with k. Hence for
all k ≥ K there exists a t ∈ N such that sign (g (tξk)) = −sign (g ((t+ 1) ξk)) or
g (tξk) = 0. �

The T given in (18) is strictly larger than the value necessary to guarantee a
crossing. A lower bound for T may be computed using the upper bound I

qk+1
for

ξk given in Lemma 3.1. Observe that(
T − 1− 2jPqk

I

)(
I

qk+1

)
=
(

I

qk+1

)(⌊
2jP (qk + qk+1)

I

⌋
− 2jPqk

I

)
< 2jP

[
qk + qk+1

qk+1

]
− 2jPqk

qk+1

= 2jP
[
qk+1

qk+1

]
= 2jP.

Now, 2jPqk
I = Mqk. M is given by the continued fraction. Therefore, for odd k,

pk
qk
> M and pk > Mqk. From this it follows that T − pk − 1 < T − 1− 2jPqk

I . So,
we know for odd k,

(20) T − pk − 1

is too small to guarantee a crossing. A similar argument produces the same lower
bound for even k. Note that since f (x) is periodic, g (x) will have two zeroes before
the t value given in Corollary 4.

If the wavelet has vanishing moments we can construct a bound for the function
g (x) given in Definition 2. The bound is given in terms of the mth derivative of
the signal and the mth moment of the wavelet. For the following four results we
assume f possesses an mth derivative.

Corollary 4. For t ≥ (qk+qk+1)
I 2jP we have t |ξk| > 2jP .

Proof. This follows from the fact that |ξk| > I
qk+qk+1

which is given in Lemma
3.1. �

Proposition 5. For a wavelet with m vanishing moments and

(21) K =
1

2j(m+1)
2
∣∣∣∣∣∣f (m)

∣∣∣∣∣∣
∞

we have

(22) |g (x)| ≤ K |Mm|

Proof. Since f (x) is m times differentiable on R we may expand about the fixed
point x0:

(23) f (x) =
m−1∑
i=0

f i (x0)
(x− x0)i

i!
+Rm (x) .
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Since ψ has m vanishing moments we have

g (x) = WdRm (j, rI + x)−WdRm (j, sI + x)

=
∫ ∞
−∞

ψ
(
2jt− rI − x

)
Rm (t) dt

−
∫ ∞
−∞

ψ
(
2jt− sI − x

)
Rm (t) dt.

(24)

If we let u = 2jt− rI−x for the first integral and u = 2jt−sI−x for the second
integral we obtain

g (x) = 2−j
∫ ∞
−∞

ψ (u)Rm

(
u+ rI + x

2j

)
du

− 2−j
∫ ∞
−∞

ψ (u)Rm

(
u+ sI + x

2j

)
du.

(25)

Recall that if f is expanded about ν, the remainder is given by

(26) Rm (t) =
(t− ν)m

m!
fm (ξ)

for some ξ between ν and t.
Observe that we may expand f about different values of ν in separate integrals.

In both cases the expansions converge to f . Since the wavelet transform is well-
defined, changing the expansion point makes no difference in the value of g (x).
Letting νr = rI + x0 for the first integral and νs = sI + x0 for the second integral
we obtain

g (x) =
1

2jm!

∫ ∞
−∞

ψ (u)
(
u+ rI + x

2j
− rI − x0

)m
f (m) (ξr (u)) du

− 1
2jm!

∫ ∞
−∞

ψ (u)
(
u+ sI + x

2j
− sI − x0

)m
f (m) (ξs (u)) du,

(27)

where xir (u) is between rI + x0 and u+rI+x
2j and ξs (u) is between sI + x0 and

u+sI+x
2j . If we then expand the binomials in both integrals and eliminate all terms

where the exponent of u is less than m (by the vanishing moments of ψ) we obtain

|g (x)| = 1
2j(m+1)m!

∣∣∣∣∫ ∞
−∞

ψ (u)um
(
f (m) (ξr (u))− f (m) (ξs (u))

)
du

∣∣∣∣
≤ |Mm|

2j(m+1)
2
∣∣∣∣∣∣f (m)

∣∣∣∣∣∣
∞
.

(28)

�

The rate at which g approaches a zero is bounded as follows.

Corollary 6. Let g be as in Definition 2 and the wavelet ψ possess m vanishing
moments. Then

(29) |g (tpkI)− gk ((t+ 1) pkI)| ≤ 2 |Mm|
2j(m+1)

sup
µ,ν∈[0,P ]

∣∣∣f (m) (µ)− f (m) (ν)
∣∣∣ .
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Proof. By the triangle inequality we have

|g (tpkI)− gk ((t+ 1) pkI)| ≤ |Wdf (j, rI + tpkI)−Wdf (j, sI + tpkI)|
+ |Wdf (j, rI + (t+ 1) pkI)−Wd (j, sI + (t+ 1) pkI)| .(30)

Each of the last two terms is bounded by

(31)
|Mm|

2j(m+1)
sup

µ,ν∈[0,P ]

∣∣∣f (m) (µ)− f (m) (ν)
∣∣∣

from the proof of Proposition 5. We restrict the supremum to the interval [0, P ]
because fm has period P . �

Corollary 7. Theorem 3 applies if we assume that only f (m) has period P and ψ
is a wavelet with m vanishing moments.

Proof. Since ψ has m vanishing moments we may write

(32) Wdf (j, rI + x) =
∫ ∞
−∞

ψ (u)Rm
(
2−j (u+ rI + x)

)
du.

We know from Taylor’s integral formula for the remainder that we may write

Rm
(
2−j (u+ rI + x)

)
as

(33)
1

(m− 1)!

∫ 2−j(u+rI+x)

rI+x0

(
2−j (u+ rI + x)− t

)m−1
f (m) (t) dt,

where the Taylor Polynomial is expanded about rI + x0. Substituting this into the
above expression we obtain
(34)∫ ∞

−∞
ψ (u)

[
1

(m− 1)!

∫ 2−j(u+rI+x)

rI+x0

(
2−j (u+ rI + x) − t

)m−1
f (m) (t) dt

]
du.

Now, fix the value of x at x1 and u at u1. Then

(35)
∫ 2−j(u1+rI+x1+2jτ)

rI+x0+τ

(
u1 + rI + x1 + 2jτ

2j
− t
)m−1

f (m) (t) dt

is 2jP periodic and continuous with respect to τ . This follows immediately from
the periodicity and continuity of f (m). Also, if we subtract the above expression
which corresponds to a Taylor expansion about rI + x0 + τ from the remainder
formula at 2−j

(
u+ rI + x1 + 2jτ

)
expanded about rI + x0, we obtain

(36)
∫ rI+x0+τ

rI+x0

(
2−j

(
u+ rI + x1 + 2jτ

)
− t
)m−1

f (m) (t) dt.

Assume r, x1, x0 and τ are constants and allow u to vary. Then (36) results in a
polynomial in u with constant coefficients of order m−1. By the vanishing moments
of ψ we may conclude that expanding f about rI + x0 and about rI + x0 + τ yield
the same transform. Therefore, by expanding about rI + x0 + τ we may conclude
that Wdf (j, rI + x) is continuous and 2jP periodic. It follows that g (x) as in
the definition of crossing is also 2jP periodic and continuous. Hence the theorem
holds. �
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Let g (x) be defined as in Definition 2. Let n be the number of zeroes of g (x).
Pick K so large that ξK = pKI − qK2jP satisfies ξK < min{δi, 1 ≤ i ≤ n},
where 2δi are the widths of the symmetric intervals between the zeroes. Now let
fτ (x) = f (x− τ). Then define

gτ (x) = Wdfτ (j, rI + x)−Wdfτ (j, sI + x)

=
∫ ∞
−∞

ψ
(
2jt− rI − x

)
fτ (t) dt

−
∫ ∞
−∞

ψ
(
2jt− sI − x

)
fτ (t) dt.

(37)

Let u = t− τ and obtain

gτ (x) =
∫ ∞
−∞

ψ
(
2ju+ 2jτ − rI − x

)
f (u) du

−
∫ ∞
−∞

ψ
(
2ju+ 2jτ − sI − x

)
f (u) du

= g
(
x− 2jτ

)
.

(38)

So, if g (xi) = 0, then gτ
(
xi + 2jτ

)
= 0. Hence the zeroes of g and the symmet-

ric intervals about each zero are translated by 2jτ to
(
xi + 2jτ − δi, xi + 2jτ + δi

)
.

Note that the width of each interval is unchanged so that the K required in the the-
orem is unchanged. The value of t is changed for each r and s, however. Recall that
K is so large that |ξk| < δi for every 1 ≤ i ≤ n. Translating the function leaves the
space between each pair of symmetric interval the same width, i.e., [xi + δi, xj + δj ]
→
[
xi + δi + 2jτ, xj + δj + 2jτ

]
.

Since the space between the intervals is unchanged we have the following propo-
sitions showing near translation invariance. Translation invariance is, of course, an
important property in applications.

Proposition 8. The t interval between any two crossings of r and s varies by at
most 1 under translation.

Proof. Assume without loss of generality that j > i. Let t be the value for which
there is a crossing of the zero of g at xi. Therefore,

(39) xi = tξk + wiξk, 0 ≤ wi < 1.

Let t+ l be the value for which there is a crossing at the zero of g at xj . Therefore,

(40) xj = (t+ l) ξk + wjξk,

where 0 ≤ wj < 1. Translating f by τ translates these zeroes as indicated above.
Now, 2jτ = b2jτ/ξcξk + wτ ξk, where 0 ≤ wτ < 1. Call the value of t after the
translation tτ . We have xi + 2jτ = tξk + b2jτ/ξkcξk + (wi + wτ ) ξk. Hence,

(41) tτ = t+ b2jτ/ξkc+ bwi + wτ c,
where the last term may be 0 or 1. The t value for the crossing at xj is

(42) t+ l + b2jτ/ξkc+ bwj + wτ c,
where the last term may be 0 or 1. The difference between these values is therefore

(43) l + bwj + wτc − bwi + wτ c.
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Note that the last difference may equal −1, 0, or 1. Hence the difference in t value
under translation is 0 or ±1. �
Corollary 9. Let Nr,s be the total number of crossings between r and s of order
k in the t interval given in Corollary 6. Then Nr,s varies by at most 1 under
translation.

Proof. In Proposition 5, i and j were arbitrary. Hence we may take i = 1 and
j = n. These correspond to the first and last zeroes of g (x) in the period. Let f
be translated by τ . The t interval between the crossings varies by at most 1 under
translation. Since the length of the t interval is greater than 2jP and less than 2jP
plus the half the length of the smallest symmetric interval about any zero of g, the
number of crossings per interval is n or n+ 1. �
Corollary 10. Let r, s, r′, s′ < pk. Assume without loss of generality that r < s
and r′ < s′. If s− r = s′ − r′, then Nr,s = Nr′,s′ ± 1.

Proof. The result follows upon letting τ = 2−j (−I (r′ − r)) and showing that
g (x) = gτ (x). Then apply Corollary 9 to conclude that the number of crossings
under translation by τ varies by at most 1. �

Corollary 10 shows that the number of crossings depends on the difference be-
tween the translation up to 1.

Note that if a signal f ∈ L2 (R) is periodic on a closed interval [a, b], then
the above results must be adjusted to be consistent with the number of periods
contained in [a, b] and with nonperiodic behavior outside this interval. Here the
time-frequency localization properties of wavelets are important. A continued frac-
tion algorithm for the estimation of M has been developed and will be the subject
of future publication and research. Establishing the continued fraction expansion
for M is subject to aliasing. This problem can be addressed by an appropriate
increase in the level of resolution.
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